PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of ultrasonic impact treatment on the microstructure and mechanical properties of diffusion-bonded TC11 alloy joints

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To derive the higher mechanical properties of diffusion-bonded joints at a low bonding temperature, ultrasonic impact treatment (UIT) was used to increase the dislocations and refine the microstructure of faying surfaces prior to diffusion bonding. The results show that a deformation layer with a thickness of 30 mm formed near the impacted TC11 alloy surface, with many dislocation tangles, substructures, and dislocation cells in this layer. Diffusion bonding experiments were performed for both original samples and UIT samples. For the original TC11 alloy, the average shear strength of the diffusion-bonded joints increased with an increase in the bonding temperature, and the joint strength was 550 MPa for joints bonded at 820 8C for 30 min under a pressure of 10 MPa. However, the average shear strength of the TC11 alloy joints with UIT reached 560 MPa for the joint that was diffusion-bonded at 780 8C, whereas it was only 370 MPa for the joint without UIT. Therefore, UIT of the alloy surface resulted in a joint with a high strength at a relatively low bonding temperature, which may be beneficial to inhibit the grain growth caused by the high temperature bonding process.
Rocznik
Strony
1431--1441
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
autor
  • Tianjin Key Lab of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
autor
  • Tianjin Key Lab of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
autor
  • Tianjin Key Lab of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
autor
  • Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
autor
  • Tianjin Key Lab of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
autor
  • Tianjin Key Lab of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
Bibliografia
  • [1] H. Sui, X. Zhang, D. Zhang, X. Jiang, R. Wu, Feasibility study of high-speed ultrasonic vibration cutting titanium alloy, J. Mater. Process. Technol. 247 (2017) 111–120.
  • [2] C. Cui, B. Hu, L. Zhao, S. Liu, Titanium alloy production technology, market prospects and industry development, Mater. Des. 32 (3) (2011) 1684–1691.
  • [3] B. Derby, E.R. Wallach, Joining methods in space: a theoretical model for diffusion bonding, Acta Astronaut. 7 (4) (1980) 685– 698.
  • [4] S. Noh, R. Kasada, A. Kimura, Solid-state diffusion bonding of high-Cr ODS ferritic steel, Acta Mater. 59 (8) (2011) 3196–3204.
  • [5] H. Zhang, J. Li, P. Ma, J. Xiong, F. Zhang, Study on microstructure and impact toughness of TC4 titanium alloy diffusion bonding joint, Vacuum 152 (2018) 272–277.
  • [6] H. Somekawa, H. Watanabe, T. Mukai, K. Higashi, Low temperature diffusion bonding in a superplastic AZ31 magnesium alloy, Scr. Mater. 48 (9) (2003) 1249–1254.
  • [7] L. Huijie, F. Xiuli, Study of diffusion bonding of fine grain TC21 titanium alloy, Rare Met. Mater. Eng. 38 (9) (2009) 1509–1513.
  • [8] H.Y. Chen, J. Cao, X.G. Song, Y.L. Shi, J.C. Feng, Effect of pre-friction surface treatment on the pre-friction assisted diffusion bonding of Zr55Cu30Ni5Al10 bulk metallic glass to aluminum alloy, Mater. Lett. 74 (2012) 125–127.
  • [9] E. Yakushina, A. Reshetov, I. Semenova, V. Polyakova, A. Rosochowski, R. Valiev, The influence of the microstructure morphology of two phase Ti-6Al-4V alloy on the mechanical properties of diffusion bonded joints, Mater. Sci. Eng. A 726 (2018) 251–258.
  • [10] M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51 (4) (2006) 427–556.
  • [11] S.I. Paul Heitjans, Diffusion and ionic conduction in nanocrystalline ceramics, J. Phys. Condens. Matter 15 (2003) 1257–1289.
  • [12] M. Gholamirad, S. Soltani, P. Sepehrband, Dislocation assisted diffusion: a mechanism for growth of intermetallic compounds in copper ball bonds, Microelectron. Reliab. 81 (2018) 210–217.
  • [13] G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, R.V. Safiullin, R.Y. Lutfullin, O.N. Senkov, F.H. Froes, O.A. Kaibyshev, Development of Ti–6Al–4V sheet with low temperature superplastic properties, J. Mater. Process. Technol. 116 (2) (2001) 265–268.
  • [14] H. Wu, X. Zhao, J. Li, S. Jiang, Z. Chen, Effect of processing factors on the microstructure and gradual diffusion of tungstenized layers, Appl. Surf. Sci. 477 (2019) 232–240.
  • [15] Q. Wang, Z. Liu, B. Wang, Q. Song, Y. Wan, Evolutions of grain size and micro-hardness during chip formation and machined surface generation for Ti-6Al-4V in high-speed machining, Int. J. Adv. Manuf. Technol. 82 (9) (2016) 1725–1736.
  • [16] H. Feng, Q.H. Fang, L.C. Zhang, Y.W. Liu, Special rotational deformation and grain size effect on fracture toughness of nanocrystalline materials, Int. J. Plast. 42 (2013) 50–64.
  • [17] R. Lapovok, V. Mendoza, V.N. Anumalasetty, P.D. Hodgson, Prediction of ductile failure in CP-Titanium as criterion of SPD process design, J. Mater. Process. Technol. 229 (2016) 678– 686.
  • [18] P. Chekhonin, D. Zöllner, E. Zimmer, J. Scharnweber, J. Romberg, W. Skrotzki, Microstructure of accumulative roll bonded high purity aluminium laminates, Materialia 5 (2019) 100236.
  • [19] J. Sun, Q. Ke, W. Chen, Material instability under localized severe plastic deformation during high speed turning of titanium alloy Ti-6.5AL-2Zr-1Mo-1V, J. Mater. Process. Technol. 264 (2019) 119–128.
  • [20] Z.-Y. Hu, X.-W. Cheng, Z.-H. Zhang, H. Wang, S.-L. Li, G.F. Korznikova, D.V. Gunderov, F.-C. Wang, The influence of defect structures on the mechanical properties of Ti-6Al-4V alloys deformed by high-pressure torsion at ambient temperature, Mater. Sci. Eng. A 684 (2017) 1–13.
  • [21] A. Zafari, X.S. Wei, W. Xu, K. Xia, Formation of nanocrystalline b structure in metastable beta Ti alloy during high pressure torsion: the role played by stress induced martensitic transformation, Acta Mater. 97 (2015) 146–155.
  • [22] O. Unal, E. Maleki, R. Varol, Effect of severe shot peening and ultra-low temperature plasma nitriding on Ti-6Al-4V alloy, Vacuum 150 (2018) 69–78.
  • [23] M.A. Vasylyev, S.P. Chenakin, L.F. Yatsenko, Ultrasonic impact treatment induced oxidation of Ti6Al4V alloy, Acta Mater. 103 (2016) 761–774.
  • [24] A.V. Panin, M.S. Kazachenok, A.I. Kozelskaya, R.R. Hairullin, E.A. Sinyakova, Mechanisms of surface roughening of commercial purity titanium during ultrasonic impact treatment, Mater. Sci. Eng. A 647 (2015) 43–50.
  • [25] C. Ye, A. Telang, A.S. Gill, S. Suslov, Y. Idell, K. Zweiacker, J.M. K. Wiezorek, Z. Zhou, D. Qian, S.R. Mannava, V.K. Vasudevan, Gradient nanostructure and residual stresses induced by Ultrasonic Nano-crystal Surface Modification in 304 austenitic stainless steel for high strength and high ductility, Mater. Sci. Eng. A 613 (2014) 274–288.
  • [26] G. Sharma, D.K. Dwivedi, Diffusion bonding of pre-friction treated structural steel with reversion of deformation induced grains, Mater. Sci. Eng. A 696 (2017) 393–399.
  • [27] L. Jing, R.D. Fu, Y.P. Wang, L. Qiu, B. Yan, Discontinuous yielding behavior and microstructure evolution during hot deformation of TC11 alloy, Mater. Sci. Eng. A 704 (2017) 434–439.
  • [28] C. Shi, Z. Lu, K. Zhang, L. Deng, C. Wang, Microstructure evolution and mechanical properties of g-TiAl honeycomb structure fabricated by isothermal forging and pulse current assisted diffusion bonding, Intermetallics 99 (2018) 59–68.
  • [29] X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev, Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena, Mater. Sci. Eng. A 540 (2012) 1–12.
  • [30] J. Wu, S. Zou, Y. Zhang, S. Gong, G. Sun, Z. Ni, Z. Cao, Z. Che, A. Feng, Microstructures and mechanical properties of b forging Ti17 alloy under combined laser shock processing and shot peening, Surf. Coat. Technol. 328 (2017) 283–291.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66c0bc43-8f90-4271-b7f1-9df53b3ed69a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.