PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of Hydrophobic Surgical Forceps using Powder Injection Molding and Surface Treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydrophobic surgical forceps of end-effectors for laparoscopic operations or minimally invasive surgery were developed through powder injection molding (PIM) and surface treatment. Processing conditions for mixing, debinding, and sintering were investigated to produce defect-free components. An optimum solid loading was determined by torque rheometry experiments. The optimized processing conditions for debinding and sintering were designed through the measurement of weight loss and shrinkage behavior by thermogravimetric analysis and dilatometry experiments. After producing the surgical forceps based on the optimized processing conditions via PIM, surface treatment was carried out to generate the hydrophobic structure on the surface.
Twórcy
autor
  • Korea Institute of Energy Research, Solar Thermal Convergence Laboratory, Daegeon, S. Korea
autor
  • Pohang University of Science and Technology, Department of Mechanical Engineering, S. Korea
autor
  • Pohang University of Science and Technology, Department of Mechanical Engineering, S. Korea
autor
  • Pohang University of Science and Technology, Department of Mechanical Engineering, S. Korea
autor
  • Pohang University of Science and Technology, Department of Mechanical Engineering, S. Korea
autor
  • Korea Institute of Industrial Technology Ultimate Manufacturing Technology R&Bd Group, S. Korea
autor
  • School of Engineering Sciences, Mahindra Ecole Centrale, India
autor
  • Pohang University of Science and Technology, Department of Mechanical Engineering, S. Korea
autor
  • Pohang University of Science and Technology, Department of Mechanical Engineering, S. Korea
Bibliografia
  • [1] L. P . Yeo, S. H. Ng, Z. Wang, Z. Wang, N. F. de Rooij, Microelectron. Eng. 86 (4), 933-936 (2009).
  • [2] R. M . German, A. Bose, Injection molding of metals and ceramics, 1997 Princeton, New Jersey.
  • [3] D. Heaney, Handbook of metal injection molding, 2012 Woodhead Publishing, Philadelphia.
  • [4] S. Ahn, S. Chung, S. Atre, S. Park, R. German, Powder Metall. 51 (4), 318-326 (2008).
  • [5] B. Huang, S. Liang, X. Qu, J. Mater. Process. Tech. 137 (1), 132-137 (2003).
  • [6] G. Aggarwal, S. J. Park, I. Smid, Int. J. Refrac. Met. H 24 (3), 253-262 (2006).
  • [7] A. Yakimov, T. Coyle, J. Mater. Sci. Lett. 19 (24), 2255-2257 (2000).
  • [8] W. J . Tseng, C.-K. Hsu, Ceram. Int. 25 (5), 461-466 (1999).
  • [9] K. Krishnamurthy, S. J. Lombardo, J. Ceram. Process. Res. 11 (4), 405-410 (2010).
  • [10] D. -M. Liu, W. J. Tseng, Ceram. Int. 24 (6), 471-481 (1998).
  • [11] J. Song, J. Evans, M. Edirisinghe, E. Twizell, J. Mater. Res. 15 (2), 449-457 (2000).
  • [12] R. K. Enneti, S. J. Park, R. M. German, S. V. Atre, Mater. Manuf. Process. 27 (2), 103-118 (2012).
  • [13] K. Hwang, T. Tsou, Metall. Mater. Trans. A 23 (10), 2775-2782 (1992).
  • [14] S. H. Chung, K.-S. Kwon, S. J. Park, R. M. German, Metals Process Simulation, ASM Handbook, 2010, ASM International, Materials Park, Ohio,
  • [15] J. -Y. Shiu, C.-W. Kuo, W.-T. Whang, P. Chen, Lab. Chip 10 (5), 556-558 (2010).
  • [16] T. Ishizaki, N. Saito, O. Takai, Langmuir 26 (11), 8147-8154 (2010).
  • [17] L. Hong, T. Pan, Microfluid Nanofluid 10 (5), 991-997 (2011).
  • [18] B. Bhushan, Y.C. Jung, Prog. Mater. Sci. 56 (1), 101-108 (2011).
  • [19] C. -C. Chang, F.-H. Huang, H.-H. Chang, T.-M. Don, C.-C. Chen, L.-P. Cheng, Langmuir 28 (49), 17193-17201 (2012).
  • [20] L. Cao, A. K. Jones, V. K. Sikka, J. Wu, D. Gao, Langmuir 25 (21), 12444-12448 (2009).
  • [21] Y. Chen, S. Chen, F. Yu, W. Sun, H. Zhu, Y. Yin, Surf. Interface Anal. 41 (11), 872-877 (2009).
  • [22] C. -H. Xue, S.-T. Jia, J. Zhang, J.-Z. Ma, Sci. Technol. Adv. Mater. 11 (3), 033002-1 (2010).
  • [23] P. Roach, N.J. Shirtcliffe, M.I. Newton, Soft Matter. 4 (2), 224-240 (2008).
  • [24] H. O. Gulsoy, C. Karatas, Mater Design 28 (9), 2488-2491 (2007).
  • [25] J. P. de Souza, S.V. Atre, P.K. Suri, J.A. Thomas, R.M. German, Congresso Anual Da ABM, Sao Paulo, 2003.
  • [26] P. A. Walls, J. Ferenczy, S. Moricca, P. Bendeich, T. Eddowes, An Investigation of Sintering Distortion in Full-Size Pyrochlore Rich Titanate Wasteform Pellets Due to Rapid Heating to 1350°C in Air, Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries VII, 2002, The American Ceramic Society, Westerville, Ohio.
Uwagi
EN
1. This research was supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2011-0030075) and was conducted under the framework of Research and Development Program at the Korea Institute of Energy Research (KIER) (B8-2413-03).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66bd19fe-285c-4349-b7ec-e123da934250
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.