Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Multilattices are generalisations of lattices introduced by Mihail Benado in [4]. He replaced the existence of unique lower (resp. upper) bound by the existence of maximal lower (resp. minimal upper) bound(s). A multilattice will be called pure if it is not a lattice. Multilattices could be endowed with a residuation, and therefore used as set of truth-values to evaluate elements in fuzzy setting. In this paper we exhibit the smallest pure multilattice and show that it is a sub-multilattice of any pure multilattice. We also prove that any bounded residuated multilattice that is not a residuated lattice has at least seven elements. We apply the ordinal sum construction to get more examples of residuated multilattices that are not residuated lattices. We then use these residuated multilattices to evaluate objects and attributes in formal concept analysis setting, and describe the structure of the set of corresponding formal concepts. More precisely, if i := (Ai, ≤i, ⊤i, ⊙i, →i, ⊥i), i = 1, 2 are two complete residuated multilattices, G and M two nonempty sets and (ϕ, ψ) a Galois connection between A 1 G and A 2 M that is compatible with the residuation, then we show that : = { (h , f) ∈ A 1 G × A 2 M ; φ (h) = f and ψ (f) = h } can be endowed with a complete residuated multilattice structure. This is a generalization of a result by Ruiz-Calviño and Medina [20] saying that if the (reduct of the) algebras i, i = 1; 2 are complete multilattices, then is a complete multilattice.
Wydawca
Czasopismo
Rocznik
Tom
Strony
217--237
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
- Department of Mathematics and Computer Science University of Dschang, BP 67, Cameroon
autor
- Bern University of Applied Sciences, Bern, Switzerland
autor
- Department of Mathematics and Computer Science University of Dschang, BP 67, Cameroon
Bibliografia
- [1] Aglianó P, Ugolini S. Strictly join irreducible varieties of residuated lattices, Journal of Logic and Computation, 2021, exab059, doi.org/10.1093/logcom/exab059.
- [2] Arnauld A, Nicole P. La logique ou l’art de penser, édition critique par Dominique Descotes, Paris: Champion, 2011. ISBN-10:2745322656, 13:978-2745322654.
- [3] Belohlavek R, Vychodil V. Fuzzy attribute logic: Entailment and non-redundant basis, 11th International Fuzzy Systems Association World Congress, Tsinghua, China, (2005), pp. 622-627. doi:10.1007/11589990_153.
- [4] Benado M. Les ensembles partiellement ordonnés et le théorème de raffinement de Schreier. II. Théorie des multistructures, Czechoslovak Mathematical Journal, 1955. 5(3):308-344. ID:116507436.
- [5] Busaniche M. Decomposition of BL-chains, Algebra universalis, 2004. 52:519-525. doi:10.1007/s00012-004-1899-4.
- [6] Cabrera IP, Cordero P, Martinez J, Ojeda-Aciego M. On residuation in multilattices: Filters, congruences, and homomorphisms, Fuzzy Sets and Systems, 2014. 234:1-21. doi:10.1016/j.fss.2013.04.002.
- [7] El-Zekey M, Medinav J, Mesiar R. Lattice-based sums, Information Sciences, 2013. 223:270-284. doi:10.1016/j.ins.2012.10.003.
- [8] El-Zekey M. Lattice-based sum of t-norms on bounded lattices, Fuzzy Sets and Systems, 2020. 386:60-76. doi:10.1016/j.fss.2019.01.006.
- [9] Ganter B, Wille R. Formal Concept Analysis: Mathematical Foundation. Springer Verlag, 1999.
- [10] Goguen JA. L-fuzzy sets, Journal of Mathematical Analysis and Applications, 1967. 18(1):145-174. doi:10.1016/0022-247X(67)90189-8.
- [11] Goguen JA. The logic of inexact concepts, Synthese 1968. 19:325-373. doi:10.1007/BF00485654. [12] Hájek P. Metamathematics of Fuzzy Logic, Kluwer, Dordrecht 1998. doi:10.1007/978-94-011-5300-3.
- [13] Höhle U. On the fundamentals of fuzzy set theory, J. Math. Anal. Appl. 1996. 201(3):786-826. doi: 10.1006/jmaa.1996.0285.
- [14] Jipsen P, Tsinakis C. A survey of residuated lattices, In: Martinez J. (eds) Ordered Algebraic Structures, Developments in Mathematics, vol. 7, Springer, Boston, MA, 2002, pp. 19-56. doi:10.1007/978-1-4757-3627-4_3.
- [15] Jipsen P, Montagna F. The Blok-Ferreirim theorem for normal GBL-algebras and its application, Algebra universalis, 2009. 60:381-404. doi:10.1007/s00012-009-2106-4.
- [16] Maffeu Nzoda LN, Koguep BBN, Lele C, and Kwuida L. Fuzzy setting of residuated multilattices, Annals of fuzzy Mathematics and informatics, 2015. 10(6):929-948. ISSN:2093-9310, ISSN:2287-6235 (electronic version).
- [17] Medina J, Ojeda-Aciego M, Ruiz-Calviño J. Concept-forming operators on multilattices. Proceedings ICFCA 2013, Dresden, Germany, May 21-24, LNAI vol. 7880, 2013 pp. 203-215. doi:10.1007/978-3-642-38317-5_13.
- [18] Medina J, Ojeda-Aciego M, Ruiz-Calviño J. On the ideal semantics of multilattices-based logic programs, Fuzzy Sets and Systems, 2007. 158(6):674-688. doi:10.1016/j.fss.2006.11.006.
- [19] Medina J, Ojeda-Aciego M, Pócsc J, Ramírez-Poussa E. On the Dedekind-MacNeille completion and Formal Concept Analysis based on multilattices, Fuzzy Sets and Systems, 2016. 303:1-20. doi:10.1016/j.fss.2016.01.007.
- [20] Ruiz-Calviño J, Medina J. Fuzzy formal concept analysis via multilattices: first prospects and results. Prodeedings CLA 2012, pp. 69-79. ID:5210713.
- [21] Zadeh LA. Fuzzy sets, Inf. Control 1965. 8(3):338-353. doi:10.1016/S0019-9958(65)90241-X.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66b5edac-a689-472d-a4fc-95d41a721cdc