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ABSTRACT 

In this paper an adaptive unscented Kalman filter based mixing filter is used to integrate 
kinematic satellite aided inertial navigation system with vision based measurements of five 
representative points on a runway in a modern receiver that incorporates carrier phase 
smoothing and ambiguity resolution. Using high resolution multiple stereo camera based 
measurements of five points on the runway, in addition to a set of typical pseudo-range esti-
mates that can be obtained from a satellite navigation system such GPS or GNSS equipped 
with a carrier phase receiver, the feasibility of generating high precision estimates of the 
typical outputs from an inertial navigation system is demonstrated. The methodology may be 
developed as a stand-alone system or employed in conjunction with a traditional strapped 
down inertial navigation systems for purposes of initial alignment. Moreover the feasibility 
of employing adaptive mixing was explored as it facilitates the possibility of using the sys-
tem for developing a vision based automatic landing controller. 
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INTRODUCTION 

Autonomous landing is a challenging and important task for both manned 
and unmanned vehicles if one wishes to achieve a high level of autonomy. The fun-
damental requirement for landing is the precise knowledge of the height and pose of 
the vehicle above the ground particularly in relation to the landing strip or runway. 
With a precise knowledge of the aircraft’s height and pose and a properly designed 
controller to govern the landing process, autonomous landing of the vehicle can be 
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achieved safely and smoothly. One of the primary aids which can form the basis of 
an autonomous landing system is a satellite based navigation system which can pro-
vide precise estimates of the aircraft’s position and orientation in space. However  
a vision sensor providing measurements of the landing strip or runway can substan-
tially improve although not guarantee a safe and smooth landing. To guarantee a safe 
and smooth landing, complimentary measurements from several sensing systems 
including inertial, satellite and vision systems must be ‘mixed’ to provide a robust 
estimate of the vehicles position and orientation relative to the landing strip. More-
over, a vision system is the only sensor that can also provide runway recognition 
thus allowing the vehicle to autonomously decide on landing at a particular location.  

Approach and landing are known to be the most demanding phases in a com-
mercial flight. Due to the altitudes involved pilots must interpret position, attitude 
and distance to the runway using only two-dimensional cues like perspective, angu-
lar size and movement of the runway. At the same time, all six degrees-of-freedom 
of the aircraft must be estimated and controlled in order to meet and track the correct 
glide path and flare till touchdown. Image-based estimation of a typical landmark’s 
spatial position and orientation provides useful information which can be used to 
correct the aircraft’s position and orientation in real time. In particular, during landing 
the landmark in question could be the geometry of specific runways as seen from the 
camera attached to an aircraft in flight. The runway geometry is assumed to be fully 
known in space fixed coordinates. Thus by measuring key intersection points on the 
runway and given the spatial position of these points in a fixed reference frame, one 
would be able to obtain accurate updates of an aircraft’s navigation position and 
orientation obtained a satellite navigation system such as GPS or GNSS. 

The focus of recent research for estimating the attitude and position of a ve-
hicle from Line-of-Sight (LOS), or bearing, measurements of a known landmark has 
been in the area of vision or camera based measurements. Typically a Kalman filter or 
one of a variety of extended Kalman filters (EKF) is used to estimate the relative posi-
tion and orientation of the vehicle relative to the landmark. The filter fuses measure-
ments from an Inertial Navigation System (INS) with camera based measurements 
using an optical sensor incorporating a position-sensing diode (PSD) to detect custom 
light beacons in the landmark. One such system is the Vision based Navigation sys-
tem (VISNAV) which uses a PSD embedded within the camera's image plane rather 
than the traditional  Charge Coupled Device (CCD) based camera. While a CCD is 
an array of closely spaced MOS diodes that detect the peak value of the light distri-
bution over an active area for each pixel and give a sequential digital output, PSDs 
are purely analog devices that generate a current in a photodiode and divide it in one 
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or two resistive layers thereby measuring the position of the centre of gravity of a light 
spot. Thus a VISNAV type sensor can provide multiple line-of-sight vectors from an 
aircraft to a runway, provided the runway is fitted with appropriate light beacons along 
its boundaries. Consequently a VISNAV type system facilitates the simultaneous esti-
mation of both relative position and attitude. 

Simultaneous Localization and Mapping (SLAM) methods constitute a family 
of approaches for mixing inertial measurements with camera based observations [11, 
12, 24]. Several algorithms have been developed for SLAM applications which 
jointly estimate the camera pose and the 3D feature positions, thus eliminating the 
need for a pre-loaded map. The performance of SLAM for aircraft landing applica-
tions is dependent on the nature of mapped landmarks (such as runway borders or 
runway centre-line) that are detected to estimate the camera’s absolute pose. There 
have been a limited number of studies, [17, 22, 26], of the feasibility of mixing vi-
sion based measurements with inertial navigation systems for aircraft navigation 
applications. The presence of well defined and pre-mapped landmarks makes the 
system state observable thus eliminating the undesirable effects of partial ob-
servability [1]. A mapped landmark-aided localization approach using vision, iner-
tial and satellite navigation sensors (such as GPS, GLONASS or the emerging 
European GNSS systems) has several advantages because information from a range 
of diverse sensors is being combined to generate an accurate estimate of the air-
craft's orientation and position coordinates. The advantages stem from the fact that 
the measurements from these systems are complimentary.  

Integration of inertial navigation systems (INS), satellite navigation systems 
(SNS) and vision sensors (VS) can be classified based on the extent to which the 
measurements from each of the systems are shared, either by the component sub-
systems or by a centralised processor seeking to combine them. When the data is 
provided to each individual component sub-system to improve its performance via 
feedback or feed forward connections while retaining the independent processing 
ability of each component sub-system, the overall integrated system is said to be 
loosely coupled. For example GPS derived estimates of the aircraft’s position could 
be provided to an inertial measuring unit (IMU) to update its outputs continually. It 
may be recalled that the inertial measuring system provides only velocity and atti-
tude increments from accelerometer and rate-gyro measurements respectively while 
a GPS receiver estimates the aircraft’s position from pseudo-range and carrier phase 
measurements. On the other hand when the measurement data is provided to a cen-
tralised processor where the fusion or mixing of the measurements is done, the system 
is tightly coupled. Generally, tightly coupled systems are facilitated by centralised 
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processing while loosely coupled systems are characterised by decentralised or dis-
tributed processing. The centralized tightly coupled approach provides the best per-
formance in navigation systems and is generally realised by a single robust Kalman 
filter. For purposes of fault detection and isolation adequate redundancy is generally 
provided by replicating the centralised processing in each of the component subsystems. 

Vision-based control during the landing phase concerns the problem of using 
a camera as a sensor in order to identify the aircraft’s position relative to the runway 
based on a real-time visual features state-vector of key landmarks. In practice what 
one has is measurements of translational accelerations and angular velocity compo-
nent rates, while visual features of the runway can be extracted from the analysis of 
an image obtained from a camera. The visual features state-vector is estimated in 
real-time from images of key landmarks obtained by a camera and measurements of 
the aircraft’s translation and angular velocities.  

For landing applications a vital problem is to first recognize the runway and 
then be able to precisely estimate the runway position relative to the aircraft. Shang and 
Shi [21] considered the problem of vision-based runway recognition for landing applica-
tions. Bourquardez and Chaumette [2] developed algorithms for visual servoing of an 
airplane requiring alignment with respect to a runway, without explicit estimation. 
Several authors, Espiau, Chaumette, and Rives [5], Kelly [9], Malis, Chaumette, 
and Boudet [14], Kelly, Carelli, Nasisi, Kuchen, and Reyes [10], Malis, Chaumette, and 
Boudet [15], Malis [13], have adopted this strategy for direct visual servoing without 
explicit estimation. Relatively accurate measurements can be made of the target 
image; direct visual servoing to align the aircraft along the runway is possible. How-
ever solving the runway estimation problem serves a dual purpose of runway recog-
nition as well as position estimation and is therefore highly desirable. Furthermore, 
the image based measurements can be mixed with satellite and inertial measure-
ments to generate precise position and orientation information for landing control. 
Shakernia, Ma, Koo and Sastry [20] consider the dual problems of vision based mo-
tion estimation and nonlinear landing control. 

The algorithm validated in this paper mixes observations of known runway 
features such as points on the runway boundary or the runway centre-line with iner-
tial and satellite navigation measurements, to provide accurate estimates of both the 
aircrafts position and orientation during landing. An adaptive unscented Kalman 
filter based mixing filter is used to integrate kinematic satellite aided inertial naviga-
tion system with vision based multiple stereo camera measurements of the same set 
of five representative points on a runway in a modern receiver that incorporates car-
rier phase smoothing and ambiguity resolution. Two of the points are assumed to lie 
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on the runway centreline at the two ends on the runway while the other two are nor-
mal to the runway centreline at its mid-point. Using high resolution multiple stereo 
camera measurements of the five points on the runway, in addition to a set of typical 
pseudo-range estimates that can be obtained from a satellite navigation system such 
GPS or GLONASS equipped with a carrier phase receiver, the feasibility of generating 
high precision estimates of the typical outputs from an inertial navigation system is 
demonstrated. The methodology may be developed as a stand-alone system or em-
ployed in conjunction with a traditional strapped down inertial navigation systems 
for purposes of initial alignment. Moreover the feasibility of employing adaptive 
mixing facilitates the possibility of using the system for developing a vision based 
automatic landing controller. 

THE GALILEO SYSTEM  
AND NAVIGATION MEASUREMENT’S FEATURES 

Europe’s Galileo is designed to be a civil system and an independent Global 
Navigation Satellite System (GNSS). It will consist of a constellation of satellites, 
complemented by ground stations for system and satellite monitoring as well as control 
functions, including an integrity function to broadcast real-time warnings of satellite 
or system malfunctions. The Galileo system architecture also includes a user seg-
ment, a space segment, and a ground segment made of a system control and a mis-
sion control part. The ESA’s first Galileo demonstration satellite Galileo In-Orbit 
Validation Element (GIOVE-A) was launched in December 2005 and the second 
(GIOVE-B) was launched successfully in May 2008. The first two satellites of the 
Galileo system, Galileo FM2 and Galileo PFM, were launched in November, 2011. 
The Galileo system is expected to be fully operational around 2013. The space seg-
ment (Galileo constellation) will consist of 27 satellites, in a 27/3/1 Walker configu-
ration, with a nominal inclination of 56°. The orbit produces seventeen revolutions 
in approximately ten sidereal days and has a mean semi-major axis of 29600 km. 
The corresponding orbit period is about 14 hours and 5 minutes and the mean orbit 
altitude is approximately 23,230 km. Each satellite will broadcast precise ranging 
and timing signals on several carriers, together with clock synchronization, orbit 
ephemeris and other data. The satellites are expected to be equipped with both H-Maser 
clocks (high-stability, satellite primary clocks) and Rubidium (RAFS) clocks (as backup 
clocks) [3]. The Galileo Signal-in-Space (SIS) data channels transmit four different 
message types according to the general contents: 

— Freely Accessible Navigation message type and related signal (F/Nav); 
— Integrity Navigation message type and related signals (I/Nav); 
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— Commercial Navigation message type and related signal (C/Nav); 
— Governmental Access Navigation message type and related signals (G/Nav). 

The Galileo navigation services are determined by the data transmitted 
through the navigation messages, allocated on the E5a, E5b, E6, and E1 sub-carriers. 
The Galileo navigation signals are transmitted in all four of these frequency bands. 
The interoperability and compatibility of Galileo and GPS is realized by having two 
common centre frequencies in E5a/L5 and E1/L1. E5b and E6 straddle the L2 band. 
Bothe the E5a and E1 bands are wider than the corresponding GPS signal bands, L5 and 
L1. The Galileo signal in space structure theoretically allows very accurate satellite 
pseudo-ranging measurements which, in conjunction with the constellation coverage 
and geometrical capabilities, should meet the Galileo system performance requirements 
[4, 6]. Following the launch of the first Galileo experimental satellite (GIOVE-A) 
analysis of real Galileo signals has shown that the Galileo code observables are capable 
of better positioning performance that the GPS C/A code [16]. Furthermore the basic 
observation equations for both the code phase and carrier phase measurements are 
similar for GPS and Galileo, with the process noise covariance in the Galileo signals 
being generally slightly lower than the corresponding process noise covariance in 
the GPS signals. It is assumed in this paper that the 27 satellites are located in three 
planes at 120° to the orbit plane of the primary satellite and in slots at 40° intervals 
from the primary satellite. The primary satellite is assumed to be either, GIOVE-A, 
the GIOVE-B or the Galileo FM2 satellite. The orbits of these three satellites are 
shown in fig. 1. The nearest three satellites visible from a particular latitude and 
longitude on the Earth’s surface are used for pseudo-range simulation. 
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Fig. 1. Orbits of the three Galileo satellites based on position measurements  

on 4th November, 2011 [own study] 
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RUNWAY CO-ORDINATES AND STEREO MEASUREMENTS 

Consider a camera fixed to an aircraft and directly viewing a runway. The 
runway is assumed to be ideally a rectangle and the five points that characterise it are 
assumed to be the midpoints of the four sides and the geometric centre of the rectangle. 
Once the runway edge locations are determined the coordinates of these five points 
can be obtained by successively averaging the coordinates of points along each edge 
as well as the points on all edges. 

The relative position of the camera with reference to the runway is defined in 
terms of three coordinates as was done by Ho and McClamroch [7]. These are the distance 
along the line joining from the centre of the camera’s lens to the geometric centre point of 
the runway, R , and two angles ( )ρβ ,  defining the longitudinal orientation of the line 
with respect to runway centre line and the lateral orientation normal to the runway centre 
line. If the camera’s position relative to the runway could be described in terms of Cartesian 
( )zyx ,, , the spherical coordinates ( )σβ ,,R  are related to the Cartesian coordinates by,  

 σβ coscosRx = , σβ sincosRy = , βsinRz −= . (1) 

Hence, R , β  and ρ  are obtained from the relations, 

 22cos yxR +=β , ⎟⎟
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, (2) 

and it follows that, 
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R
zatan2β , )(sin 1

R
y−=ρ , (3) 

where atan2(.) is the standard MATLAB inverse tangent function for ex-
tracting the angle from its sine and cosine components. 

The orientation of the camera is defined by three angles ( )δγα ,, . α  and γ  
are rotations of the body about the lateral and longitudinal axes respectively and 
defined in figs. 4a and 4b. The third angle is the rotation about the third axis that is 
assumed to be mutually perpendicular to the other two. The three angles are related 
to the 3-2-1 sequence of Euler angles by the relations, 

 δφ = , βγθ += , ⎥
⎦

⎤
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⎡
+
+
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)cos(
)sin(sin 1

βγ
ραψ . (4) 

The inverse relations are,  

 ( ) ρψθα −= − sincossin 1 , βθγ −= , φδ = . (5) 
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Finally the Euler angles are related to the quaternion parameters, which are 
used for computations to avoid singularities, by, 
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The Euler angles may be uniquely extracted from a quaternion as:  
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In the case of stereo, two cameras take pictures of a same object space but 
with a different view. The two dimensional images on the plane of projection repre-
sent the object in the camera image. These two images contain some encrypted infor-
mation, the image-depth which is the same for both. This information is the third 
dimension of two dimensional images. Therefore, the object distance and its depth can 
be determined by using stereo cameras. With reference to fig. 2 the distance between 
the two points of view is called the baseline. The end to end baseline’s distance affects 
the range resolution, which in turn influences the range of the depth that can be calcu-
lated. The difference in the distance on the image plane of a typical point in the object 
between its two images is known as the disparity in the images of the point.  

 

 
Fig. 2. Geometry of stereo imaging on a common plane for depth estimation [own study] 
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Typically a stereo system uses a horizontal baseline. The cameras are as-
sumed to be placed at the same elevation. The process of stereo vision is then typi-
cally defined as explicitly matching the features in left and right images by finding  
a transformation relating the two. The stereo baseline b is the distance between the 
centres of the projection Ol and Or. The xl and xr are the coordinates of Pl and Pr 
with respect to the principal points pl and pr, where the f is a focal length of the cam-
era. The depth of P is estimated by the following equation: 

 
Z
b

fZ
xxb rl =

−
−+

. (8) 

Hence it can be shown that in terms of the disparity d, 
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In a stereo camera, including two views of the same scene is equivalent to 
adding an additional measurement of the disparity d, for each point measured. Thus 
stereo camera measurements can be assumed to enhance the observability provided 
by them as well as increase the number of measurements provided by 50%. 

The stereo camera is assumed to provide measurements of the five points 
characterising the runway. The last of these points is the geometrical centre of the 
runway which is also the mean of the first four points. Of the first four points, two 
lie along the runway centre line while the other two are along the line normal to the 
runway centre-line at its mid-point. Subtracting the runway centre from the coordi-
nates of the four other points, they may be related to the camera coordinates, for the 
jth camera, by the relations,  
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In the equations (10), f is the focal length of the cameras, 2L is the length of 
the runway and 2W is the width of the runway and jvn ,1  to jvn ,8 , are scalar white 

noise processes of known intensity for the jth camera. In addition, in the case stereo 
cameras which share a common image plane as shown in Fig. 2, disparity measure-
ments can also be made. These are related to the position of the runway points by 
the relations, 
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for each camera pair ( )1, −jj  in a stereo configuration where 1,,, +jjknZ  is the 

normal distance of kth runway point from the camera pair baseline and 1,,8 ++ jjkvn  

are scalar white noise processes of known intensity for the kth runway point and the 
jth and j+1th camera pair. The normal distance of kth runway point from the 
( )1, −jj  camera pair’s baseline, 1,,, +jjknZ  is computed from, 
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where r
kp  is the vector position of the runway point in Earth coordinates and c

jp  is 

the vector position of the jth camera’s reference frame origin in Earth coordinates. 
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PROCESS MODELLING AND GNSS MEASUREMENTS 

The complete high precision navigation equations have been derived by 
[25]. These are summarised here for completeness: 
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where VN, VE and VD are the north, east and down velocities in the local tangent 
plane, with reference to a local geodetic frame often referred to as the navigation 
frame (n-frame) or north-east-down frame. The last three equations relate these veloci-
ties to the rate of change of the geodetic latitude (λ ), the rate of change of longitude 
(ϕ ) and the altitude ( h ) rate. AN, AE and AD are the north, east, down components of 
the measured acceleration in the n-frame which must be compensated by adding the 
acceleration due to gravity g, in down direction, sω  is angular velocity of the Earth, 

MR  and PR  are the radii of curvature in the meridian and prime vertical at a given 
latitude. The acceleration components are defined by, 

 ( )[ ]FnbADDA 1 Δ+++= −
11, mbnNED  (12a) 

and 
 [ ] [ ]TbnNED g00, == − GDDG 1 , (12b) 

where, [ ] [ ]( )rrF ××−××≡Δ ωωωω ss , sω  is the Earth’s rotation rate vector, 

bn,D  is the transformation of the measured body acceleration components to the 

north, east, down components in the navigation or n-frame, G is the gravitational 
component of the acceleration in the body frame, mA  is the actual measured accelera-

tion vector obtained from a triad of pendulous accelerometers, 1b  is a measurement 

bias and drift vector and 1n  is a measurement white noise vector. The matrix D is 
defined as, 
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[ ]TTTT
321 dddD = , 

where the vectors id  are defined as,  

[ ] [ ] [ ]iiiiiiiiiiiiiiiiii
i zzzrzrzrzrzrzrz 321211213313223 −−−=⋅−≡ × zrzd  

 [ ] [ ]iiii zzz 321=z , (13) 

iz , is the direction of sensitivity of the ith accelerometer and ir  is the position vec-
tor of the accelerometer location in the body fixed frame. The transformation of the 
measured body acceleration components to the north, east, down components in the 
n-frame bn,D , satisfies the differential equation,  

 bbnbnGbn ΩΩ ,,, DDD =+& . (14) 

In equation (14) the matrix GΩ  is obtained from the components of the an-
gular velocity vector of the local geodetic frame or n frame. The angular velocity 
vector of the local geodetic frame or n frame may be expressed in terms of the Earth 
angular velocity in the local geodetic frame sω  as, 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+=

λϕ
λ
λϕ

sin
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&
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sG ωω  with 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

λ

λ
ω

sin
0

cos

ssω . (15) 

The drift and bias vectors are assumed to be a first order Gauss-Markov 
processes given by, 
 2nbb += 21

& , 32 nb =& , (16) 

where 2n , 3n , are a white noise vector driving the processes. 

The body angular velocity vector, bωω =  is assumed to be measured by a triad 
of fibre optic laser gyros. Thus the measure angular velocity vector is assumed to be 
related to the body angular vector, 

 43 nbL ++= mb ωω , (17) 

where L is matrix of the three directions of sensitivity of the fibre-optic laser gyros, 

mω  the actual measured angular velocities, 2b  is a measurement bias and drift 

vector and 3n  is a measurement white noise vector. Following Savage (1998a) and 
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Savage (1998b) the bias and drift vector is assumed to be a first order Gauss-Markov 
process given by,  
 543 nbb +=&  , 64 nb =& , (18) 

where 5n , 6n , are a white noise vector driving the processes. 
The attitude quaternion is then computed from the equations, 

 ( )q
2
1q ωΩ =& , ( )

⎥
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−
−
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0
0

0
0
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⎦
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⎢
⎢
⎢

⎣

⎡
=

3

2

1

ω
ω
ω

ω , (19) 

where the quaternion components are subject to the constraint 
1=+++ 2

4
2
3

2
2

2
1 qqqq . Once the solution for the quaternion is known, the transfor-

mation from the inertial to the body fixed frame Ib,D is computed from, 

 ( )
( ) ( )

( ) ( )
( ) ( ) ⎥
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Ib qD . (20) 

and its inverse is obtained from the same equation by changing the sign of 4q . The 

required transformation bn,D  may then be computed without matrix inversion 

from 1
,,
−

IbIn DD , the transformations from the inertial to the n-frame and the inverse 

transformation from the inertial to the body fixed frame. Alternately bn,D  may be 

computed directly from the associated quaternion, representing the relative attitude 
of the navigation from relative to the body frame. The vision based measurements of 
the four pairs of coordinates of points on the runway relative to the runway centre 
are assumed to be functions of the body orientation as discussed in the previous 
section. 

The actual pseudo-range vector is related to the geodetic latitude λ , geo-
centric latitude sλ , longitude φ  and altitude h, by the relations, 
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where ρ  is the Earth centred, Earth fixed position vector of the aircraft, sr  the 

radius at a surface point of the flattened Earth ellipsoid and sλ are defined in terms 

of the flattening f and the equatorial radius eR  as, 

 ( )( )λλ tan1arctan 2fs −=  (22) 

and 

 ( )( )( )ses fRr λ222 sin1111 −−+= . (23) 

The Galileo pseudo range measurement model and the model of the Hatch 
filter for mixing the corresponding code based measurements with carrier phase 
measurements are implemented in discrete form as discussed by [25]. 

ADAPTIVE UNSCENTED KALMAN FILTERING 

The mixing filter is implemented as an adaptive unscented Kalman filter. 
The basic unscented Kalman filter is identical to the filter implemented in [25]. 

Consider a random variable w with dimension L which is going through the 
nonlinear transformation, y = f(w). The initial conditions are that w has a mean w  
and a covariance wwP . To calculate the statistics of y, a matrix χ of 2L + 1 sigma 
vectors is formed. We have chosen to use the scaled unscented transformation pro-
posed by Julier [8], as this transformation gives one the added flexibility of scaling 
the sigma points to ensure that the covariance matrices are always positive definite.  

Given a general discrete nonlinear dynamic system in the form, 

 ( ) kkkkk wuxfx +=+ ,1 , ( ) kkkk vxhy += , (24) 

where n
k R∈x  is the state vector, r

k R∈u  is the known input vector, m
k R∈y  is 

the output vector at time k kw  and kv  are, respectively, the disturbance or process 
noise and sensor noise vectors, which are assumed to Gaussian white noise with zero 
mean. Furthermore kQ  and kR  are assumed to be the covariance matrices of the 
process noise sequence, kw  and the measurement noise sequence, kv  respectively. 
The unscented transformations of the states are denoted as, 

 ( )kk
UT
k

UT
k uxff ,= , ( )k

UT
k

UT
k xhh = , (25) 
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while the transformed covariance matrices and cross-covariance are respectively 
denoted as, 

 ( )kk
ff

k
ff

k uxPP ,ˆ= , ( )−− = k
hh
k

hh
k xPP ˆ  (26a) 

and  
 ( )kk

xh
k

xh
k uxPP ,ˆ −−− = . (26b) 

The UKF estimator can then be expressed in a compact form. The state 
time-update equation, the propagated covariance, the Kalman gain, the state estimate 
and the updated covariance are respectively given by, 

 ( )1xfx −−
− = k

UT
kk ˆˆ 1 ; (27a) 

 11
ˆ

−−
− += k

ff
kk QPP ; (27b) 

 ( ) 1ˆˆ −−− += k
hh
k

xh
kk RPPK ; (27c) 

 ( )[ ]−− −+= k
UT
kkkkk xhzKxx ˆˆˆ ; (27d) 

 ( ) T
kk

hh
kkk KRPKPPk

1ˆˆˆ −−− +−= . (27e) 

Equations (27) are in the same form as the traditional Kalman filter and the 
extended Kalman filter. Thus higher order non-linear models capturing significant 
aspects of the dynamics may be employed to ensure that the Kalman filter algorithm 
can be implemented to effectively estimate the states in practice. 

In order to employ the UKF when precise statistics of the process and measure-
ment noise vectors are not available, the adaptive filter method proposed by Song, 
Qi and Han [23] is used to estimate the orbit parameters. The covariance matrixes of 
measurement residuals are recursively updated in the UKF. The measurement noise 
covariance matrices, in the case of the UKF, may be expressed as: 

 hh
k

Nk
rk PCR ˆˆ  , += , (28) 

where, Nk
r

 ,C  is defined in terms of the sample size N and the residual kr  as, 

 ∑
+−=

=
k

Nkj

T
jj

Nk
r N 1

 , 1 rrC , ( ) ( )kkkkkkk xxHvxHzr k ˆˆ −+=−= . (29) 

Equation (28) involves the further computation of hh
kP̂ , by applying the un-

scented nonlinear transformation, ( )k
UT
k xh ˆ  to the state estimate, kx̂ . The measurement 
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noise covariance may be updated in principle by employing the equation (28). The 
nonlinear relationships between the covariance matrices also suggests that the up-
date of kR  could be done by employing the covariance of the residual. 

In the application considered in this paper, the adaptation of kQ  is imple-
mented, as it is the process statistics that is often unknown or may be considered to 
vary. It was observed that the magnitudes of the filter gains were relatively small 
and for these reasons the exact expression for an estimate of kQ , 

 ff
kk

Nk
xk 1
 ,

1
ˆˆ

−Δ− −+≡ PPCQ  (30a) 
was approximated as, 
 Nk

xk
 ,

1
ˆ

Δ− ≈ CQ , (30b) 

where Nk
x
 ,

ΔC  is defined as, 

 =−

+−=
Δ =−≈ΔΔ= ∑ kkkkk

k

Nkj

TNk
x N

PHKPPxxC ˆˆˆ1

1

 ,  (31) 

and 
 ( ) ( )kkkk xxxxx ˆˆ −−−=Δ − . (32) 

VISION-GNSS-INS  
INTEGRATED MIXING FILTER MECHANISATION 

The process model for applying the adaptive UKF is exactly the same as in 
[25]. The primary difference is that the method of measurement of the attitude by using 
multiple antennas adopted in [25] is now replaced by the camera based measure-
ments of the four pre-selected points on the runway. 

To test the filter performance and to subject it to realistic accelerations over an 
extended period of time, the aircraft was assumed to descending in the vicinity of Lon-
don Heathrow. The initial altitude of the vehicle was assumed to be 10 000 metres while 
the initial location was assumed to be approaching London Heathrow. The simulations 
were compared with the both the adaptive and non-adaptive (standard) UKF. The com-
parison is made over a typical epoch of 30 seconds (= 15 ×  104 time steps) and compared 
with the corresponding simulations. The time step for implementing the estimator was 
chosen as, Δt = 0.0005 seconds. In figures 3, 4, 5, 6 and 7 the results obtained using the 
UKF without adaptation are compared with the simulations. Only the responses over the last 
12 seconds are shown in the figures. From the figures 3–7 it is observed that the aircraft 
was subjected to a relatively large random disturbance after about 10 seconds.  
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Fig. 3. Comparison of the UKF estimates and simulations of the latitude (rad),  

longitude (rad) and attitude in metres (LLA) [own study] 
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Fig. 4. Comparison of the UKF estimates and simulations of the aircraft’s horizontal velocity 

[own study] 
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Fig. 5. Comparison of the UKF estimates and simulations of the aircraft’s vertical velocity 

[own study] 
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Fig. 6. Estimates of the Pseudo-range error components obtained  

by the non-adaptive (standard) UKF for an INS-GNSS (GALILEO) system [own study] 
 

It is observed from fig. 6 and 7 that when the vision measurements were mixed 
with the simulated INS-GNSS (GALILEO) measurements, the predicted pseudo-range 
errors are comparable to the corresponding errors obtained by mixing with INS-GPS 
measurements. However the errors were generally noisier, with the noise magnitudes 
about the same as the perturbations due to attitude changes, thus making it impossible to 
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predict the attitude quaternion components accurately. It is also interesting to observe 
that the estimator recovered with respect to all the states and it continues to track the 
measurements after recovering from the effects of the disturbance. In the case of the adap-
tive UKF, the estimator was able to perform as well as the non-adaptive case only in the 
case of position estimates. This is illustrated in figure 8. In the case of orientation or 
attitude estimates, both the standard and adaptive UKF were unable to accurately esti-
mate the quaternion components for INS-GNSS (GALILEO) simulated measurements. 
This was due to the lack of accurate orbit data for an adequate number of independent 
GALILEO satellites. While the methodology worked well with simulated INS-GPS 
measurements, it was unable to accurately estimate the quaternion components with the 
three available GALILEO satellite measurements. 
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Fig. 7. Comparison of the adaptive and non-adaptive (standard) UKF pseudo-range  

estimate error components for an INS-GPS system [own study] 
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Fig. 8. Comparison of the adaptive UKF estimates and simulations of the latitude (rad),  

longitude (rad) and attitude in metres (LLA) [own study] 

CONCLUSIONS 

In this paper we have successfully demonstrated the integration of camera 
measurements of five representative points on a runway with a GNSS-INS (GALILEO) 
navigation system to successfully predict the position and orientation of an aircraft 
while it is approaching the runway. In this implementation increasing the number of 
camera measurements did not increase the accuracy of attitude predictions. On the 
other hand when the five points on the runway are equidistant from the runway centre 
the attitude prediction error reduces considerably. 
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Vision based methods which seek to integrate camera measurements with 
traditional Satellite Navigation-INS position and orientation estimation have the pri-
mary advantage of increasing estimation accuracy as the aircraft approaches the 
runway. However the methodology is feasible only when the runway is within the field 
of view of the camera. When the aircraft is relatively far from the runway it is possible 
in principle to use the horizon measurements or some other known visual or infra-
red landmark selected from a catalogue of such reference marker points to initialize 
the estimation. On the other hand as the aircraft approaches closer to landing when 
the entire runway may not be within the field of view of the camera, an alternate set 
of five points in the vicinity of the touchdown region could be used to improve the 
accuracy of position and orientation estimation. The inclusion of such catalogued 
landmarks to improve the position and orientation estimation accuracy is currently 
being investigated and will be reported elsewhere.  

The ultimate accuracy of the integrated estimation system depends primarily 
on the characteristics of the image processing in general and methods used to extract 
the geometrical features from the image in particular which in turn would depend on 
the pixel quantization of the image plane and computer power available. Yet the 
results obtained in the paper demonstrate the practical feasibility of the proposed 
integrated position and orientation estimation system. 
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