PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and mechanical and thermal properties of multiblock terpoly(ester-ether-amide) thermoplastic elastomers with variable mole ratio of ether and amide block

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A series of the terpolymers of poly[(trimethylene terephthalate)-block-(oxytetramethylene)-block-laurolactam] with a variable molar ratio of ether and amide block and constant molecular weights of PA12 = 2000 g/mole and PTMO = 1000 g/mole have been obtained. The infl uence of changes of these molar ratios on the functional properties and the values of phase change temperatures of the products have been determined. The thermal properties and the phase separation of obtained systems were defi -ned by DSC, DMTA and WAXS methods. The chemical structure of obtained materials was studied by FT-IR and 13C NMR methods. The mechanical and elastic properties of these polymers were evaluated.
Rocznik
Strony
10--16
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin; Pułaskiego 10, 70-322 Szczecin, Poland,
  • Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin; Pułaskiego 10, 70-322 Szczecin, Poland,
Bibliografia
  • 1. Aleksandrovic, V., Djonlagic, J. (2001). Synthesis and characterization of thermoplastic copolyester elastomers modified with fumaric moieties. J. Serb. Chem. Soc. 66(3), 139–152. DOI: 10.2298/JSC0103139A.
  • 2. Van der Schuur, M., Gaymans, R. (2007). Influence of morphology on the properties of segmented block copolymers. Polymer, 48, 1998–2006. DOI: 10.1016/j.polymer.2007.01.063.
  • 3. Wilson, R., Divakaran, A., Kiran, S., Varyambath, A., Kumaran, A., Sivaram, S., Ragupathy, L. (2018). Poly(glycerol sebacate)-Based Polyester–Polyether Copolymers and Their Semi-Interpenetrated Networks with Thermoplastic Poly(ester– ether) Elastomers: Preparation and Properties. ACS Omega. 3, 18714–18723. DOI: 10.1021/acsomega.8b02451.
  • 4. Holden, G. (2011). Thermoplastic Elastomers. In M. Kutz (Ed.), Appl. Plastics Engin. Handbook, 77–91, Waltham, Elsevier.
  • 5. Holden, G., Bishop, E., Legge, N. (1969). Thermo-plastic elastomers. J. Polym. Sci. 26, 1, 37–57. DOI: 10.1002/polc.5070260104.
  • 6. Balta Callej,a F.J., Rosłaniec, Z. (2000). Block copolymers, New York, Marcel Dekker.
  • 7. Zhang, J., Deubler, R., Hartlieb, M., et al. (2017). Evolution of Microphase Separation with Variations of Segments of Sequence-Controlled Multiblock Copolymers. Macromolecules, 50, 18, 7380–7387. DOI: 10.1021/acs.macromol.7b01831.
  • 8. Bates, F.S., Fredrickson, G.H. (1999). Block Copolymers—Designer Soft Materials. Physics Today, 52, 33–38. DOI: 10.1063/1.882522.
  • 9. Armstrong, S., Freeman, B., Hiltner, A., Baer, E. (2012). Gas permeability of melt-processed poly(ether block amide) co-polymers and the effects of orientation. Polymer. 53, 1383–1392. DOI: 0.1016/j.polymer.2012.01.037.
  • 10. Krijgsman, J., Husken, D., Gaymans, R. (2003). Synthesis and properties of thermoplastic elastomers based on PTMO and tetra-amide. Polymer, 44, 7573–7588. DOI: 10.1016/j. polymer.2003.09.043.
  • 11. Yang, I., Tsai, P. (2006). Intercalation and viscoelasticity of poly(ether-block-amide) copolymer/montmorillonite nano-composites: Effect of surfactant. Polymer, 47, 5131–5140. DOI: 10.1016/j.polymer.2006.04.065.
  • 12. Nojima, S., Kiji, T., Ohguma, Y. (2007). Characteristic Melting Behavior of Double Crystalline Poly(ε-caprolactone)-block-polyethylene Copolymers. Macromolecules, 40, 21, 7566–7572. DOI: 10.1021/ma0627830.
  • 13. Klinedinst, D., Yilgör, I., Yilgör, E., et al. (2012). The effect of varying soft and hard segment length on the structure–property relationships of segmented polyurethanes based on a linear symmetric diisocyanate, 1,4-butanediol and PTMO soft segments. Polymer, 53, 5358–5366. DOI: 10.1016/j. polymer.2012.08.005.
  • 14. Winnacker, M., Rirger, B. (2015). Poly(ester amide)s: recent insights into synthesis, stability and biomedical applications. Polym. Chem. 7, 7039–7046. DOI: 10.1039/C6PY01783E.
  • 15. Rodriguez-Galan, A., Lourdes, F., Puiggali, J. (2010). Degradable Poly(ester amide)s for Biomedical Applications. Polymers, 3(1), 1634–1645. DOI: 10.3390/polym3010065.
  • 16. Sijbrandi, N., Kimenai, A., Mes E., et al. (2012). Synthesis, Morphology, and Properties of Segmented Poly(ether amide)s with Uniform Oxalamide-Based Hard Segments. Macromolecules, 45, 9, 3948–3961. DOI: 10.1021/ma2022309.
  • 17. Fu, T., Wei, Y., Cheng, P., et al. (2018). A Novel Biodegradable and Thermosensitive Poly(Ester-Amide) Hydrogel for Cartilage Tissue Engineering. BioMed Research International. Art. id 2710892. Retrieved June 2, 2021 from Hindawi.com database on the World Wide Web: https://www.hindawi.com. DOI: 10.1155/2018/2710892.
  • 18. Zeng, F., Xu, J., Sun, L., et al. (2020). Copolymers of ε-caprolactone and ε-caprolactam via polyesterification: towards sequence-controlled poly(ester amide)s. Polym. Chem. 11, 1211–1219. DOI: 10.1039/C9PY01388A.
  • 19. Goonoo, N., Bhaw-Luximon, A., Bowlin, G., Jhurry, D. (2012). Diblock Poly(ester)-Poly(ester-ether) Copolymers: I. Synthesis, Thermal Properties, and Degradation Kinetics. Ind. Eng. Chem. Res. 51, 37, 12031–12040. DOI: 10.1021/ie301703j.
  • 20. Xu, Q., Tang, L., Wang, Ch., et al. (2017). Effects of Poly(Ethylene Glycol) Segment on Physical and Chemical Properties of Poly(Ether Ester) Elastomers. Materials Science Forum, 898, 2147–2157. Retrieved June 10, 2021 from Scientific. net database on the World Wide Web: https://www.scientific.net. DOI: 10.4028/www.scientific.net/MSF.898.2147.
  • 21. Catiker, E., Ozturk, T., Atakay, M., et al. (2019). Synthesis and characterization of novel ABA type poly(Ester-ether) triblock copolymers. J. Polym. Res. 26, 123–126. DOI: 10.1007/s10965-019-1778-5.
  • 22. Peng, X., Behl, M., Zhang, P., et al., (2017). Synthesis and Characterization of Multiblock Poly(Ester-Amide-Urethane) s. MRS Advances, 2, 2551–2559. DOI: 10.1557/adv.2017.486.
  • 23. Van Krevelen, D.W., Te Nijehuis, K. (2009). Properties of Polymers, Amsterdam, Elsevier.
  • 24. Scheirs, J., Long, T.E. (2003). Modern Polyesters:chemistry and technology of polyesters and copolyesters, Hoboken, John Wiley & Sons.
  • 25. Touris, A., Turcios, A., Mintz, E., et al. (2020). Effect of molecular weight and hydration on the tensile properties of polyamide 12. Results in Materials, 8, 100149. DOI 10.1016/j. rinma.2020.100149.
  • 26. O’Connor, H.J., Dickson, A.N., Dowling, D.P. (2018). Evaluation of the mechanical performance of polymer parts fabricated using a production scale multi jet fusion printing process. Additive Manufacturing, 22, 381–387. DOI: 10.1016/j. addma.2018.05.035
  • 27. Rosenbloom, S.I., Gentekos, D.T., Silberstein, M.N., Fors, B.P. (2020). Tailor-made thermoplastic elastomers: customisable materials via modulation of molecular weight distributions. Chem. Sci. 11, 1361–1367. DOI: 10.1039/C9SC05278J.
  • 28. Cho, H., Mayer, S., Poselt, E., et al. (2017). Deformation mechanisms of thermoplastic elastomers: Stress-strain behavior and constitutive modeling. Polymer, 128, 87–99. DOI: 10.1016/j. polymer.2017.08.065.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66b191e4-4003-4d51-9dcf-54799edc1868
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.