PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compressive behavior of metakaolin–fly-ash-based geopolymer fiber-reinforced concrete after exposure to elevated temperatures

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Portland cement production is responsible for 7% of the total carbon dioxide emissions around the world. Recently, there has been significant focus on developing environmentally sustainable construction products. Geopolymer concrete (GPC) is a sustainable material, and incorporating fibers can mitigate its brittleness while enhancing its overall performance, providing significant potential for various applications. Nonetheless, fire drastically reduces the structural strength and lifetime of reinforced concrete structures. To address this issue, this study investigates the compressive behavior of metakaolin–fly-ash-based geopolymer fiber-reinforced concrete after exposure to elevated temperatures. The GPC mixtures were made of steel fibers (SFs) and a combination of SF and polyvinyl alcohol (PVA) fibers, which were evaluated at exposure temperatures of 300 and 500°C. This investigation experimentally tests a total of 27 cylinders at 28 days, each with a diameter of 100 mm and a height of 200 mm. The results indicate that exposure of the GPC specimens to 300 and 500°C resulted in reductions of up to 24.2 and 45.2%, respectively. The inclusion of fibers had a slight effect on compressive strength, with the use of SF and hybrid fibers (SF + PVA) resulting in improvements of 8.1 and 7.5%, respectively. The addition of fibers significantly improved the post-peak response of both heated and unheated specimens, increasing the toughness index with ratios of up to 22.5 and 26.3% for the heated and unheated specimens, respectively.
Wydawca
Rocznik
Strony
180--196
Opis fizyczny
Bibliogr. 49, rys., tab.
Twórcy
  • Department of Civil Engineering, College of Engineering, King Saud University Riyadh, Saudi Arabia
  • Department of Civil Engineering, College of Engineering, King Saud University Riyadh, Saudi Arabia
  • Department of Civil Engineering, College of Engineering, King Saud University Riyadh, Saudi Arabia
  • Department of Civil Engineering, College of Engineering, King Saud University Riyadh, Saudi Arabia
Bibliografia
  • [1] Abadel, A.A., Alghamdi, H., Alharbi, Y.R., Alamri, M., Khawaji, M., Abdulaziz, M.A.M., et al., Investigation of alkali-activated slag-based composite incorporating dehydrated cement powder and red mud, Materials, 2023, 16: 1551. doi: 10.3390/MA16041551
  • [2] Alghannam, M., Albidah, A., Abbas, H., Al-Salloum, Y., Influence of critical parameters of mix proportionson properties of MK-based geopolymer concrete, Arab. J. Sci. Eng., 2021, 46: 4399–4408. doi:10.1007/S13369-020-04970-0/FIGURES/10
  • [3] Zhuang, X.Y., Chen, L., Komarneni, S., Zhou, C.H., Tong, D.S., Yang, H.M., et al., Fly ash-based geopolymer: Clean production, properties and applications, J. Clean. Prod., 2016, 125: 253–267. doi:10.1016/ J.JCLEPRO.2016.03.019
  • [4] Abadel, A.A., Albidah, A.S., Altheeb, A.H., Alrshoudi, F.A., Abbas, H., Al-Salloum, Y.A., Effect of molar ratios on strength, microstructure & embodied energy of metakaolin geopolymer, Adv. Concr. Constr., 2021, 11: 127–140
  • [5] Shaikh, F.U.A., Vimonsatit, V., Effect of cooling methods on residual compressive strength and cracking behavior of fly ash concretes exposed at elevated temperatures, Fire Mater., 2016, 40: 335–350. doi: 10.1002/FAM.2276
  • [6] Hemra, K., Yamaguchi, S., Kobayashi, T., Aungkavattana, P., Jiemsirilers, S., Compressive strength and setting time modification of class C fly ash-based geopolymer partially replaced with kaolin and metakaolin, Key Eng. Mater., 2018, 766: 157–163. doi: 10.4028/WWW.SCIENTIFIC.NET/KEM.766.157
  • [7] Barbhuiya, S., Pang, E., Strength and microstructure of geopolymer based on fly ash and metakaolin, Materials, 2022, 15: 3732. doi:10.3390/MA15103732
  • [8] Zulkifly, K., Cheng-Yong, H., Yun-Ming, L., Bayuaji, R., Abdullah, MMAB, Bin Ahmad, S., et al., Elevated-temperature performance, combustibility and fire propagation
  • index of fly ash-metakaolin blend geopolymer with addition of monoaluminium phosphate (MAP) and aluminum dihydrogen triphosphate (ATP), Materials (Basel), 2021, 14: 1973. doi:10.3390/MA14081973
  • [9] Zhang, H.Y., Qiu, G.H., Kodur, V., Yuan, Z.S., Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure, Cem. Concr. Compos., 2020, 106: 103483. doi: 10.1016/J.CEMCONCOMP.2019.103483
  • [10] Fahim Huseien, G., Mirza, J., Ismail, M., Ghoshal, S.K., Abdulameer Hussein, A., Geopolymer mortars as sustainable repair material: A comprehensive review, Renew. Sustain. Energy Rev., 2017, 80: 54–74. doi: 10.1016/J.RSER.2017.05.076
  • [11] Fan, F., Liu, Z., Xu, G., Peng, H., Cai, C.S., Mechanical and thermal properties of fly ash based geopolymers, Constr. Build. Mater., 2018, 160: 66–81. doi: 10.1016/J.CONBUILDMAT.2017.11.023
  • [12] Junru, R., Huiguo, C., Ruixi, D., Tao, S., Behavior of combined fly ash/GBFS-based geopolymer concrete after exposed to elevated temperature, IOP Conf. Ser. Earth Environ. Sci., 2019, 267: 032056. doi: 10.1088/1755-1315/267/3/032056
  • [13] Zhang, H.Y., Kodur, V., Qi, S.L., Cao, L., Wu, B., Development of metakaolin–fly ash based geopolymers for fire resistance applications, Constr. Build. Mater., 2014, 55: 38–45. doi: 10.1016/J.CONBUILDMAT.2014.01.040
  • [14] Moradikhou, A.B., Esparham, A., Jamshidi Avanaki, M., Physical & mechanical properties of fiber reinforced metakaolin-based geopolymer concrete, Constr. Build. Mater., 2020, 251: 118965. doi: 10.1016/J.CONBUILDMAT.2020.118965
  • [15] Tahwia, A.M., Ellatief, M.A., Bassioni, G., Heniegal, A.M., Elrahman, M.A., Influence of high temperature exposure on compressive strength and microstructure of ultra-high performance geopolymer concrete with waste glass and ceramic, J. Mater. Res. Technol., 2023, 23: 5681–5697. doi: 10.1016/j.jmrt.2023.02.177
  • [16] Assaedi, H., Alomayri, T., Siddika, A., Shaikh, F., Alamri, H., Subaer, S., et al., Effect of nanosilica on mechanical properties and microstructure of PVA fiber-reinforced geopolymer composite (PVA-FRGC), Materials, 2019, 12: 3624. doi: 10.3390/MA12213624
  • [17] Farhan, N.A., Sheikh, M.N., Hadi, M.N.S., Engineering properties of ambient cured alkali-activated fly ash–slag concrete reinforced with different types of steel fiber, J. Mater. Civ. Eng., 2018, 30: 04018142. doi: 10.1061/(ASCE)MT.1943-5533.0002333
  • [18] Wongruk, R., Songpiriyakij, S., Sukontasukkul, P., Chindaprasirt, P., Properties of steel fiber reinforced geopolymer, Key Eng. Mater., 2015, 659: 143–148. doi: 10.4028/WWW.SCIENTIFIC.NET/KEM.659.143
  • [19] Aygörmez, Y., Canpolat, O., Al-mashhadani, M.M., Uysal, M., Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites, Constr. Build. Mater., 2020, 235: 117502. doi: 10.1016/J.CONBUILDMAT.2019.117502
  • [20] Dhasindrakrishna, K., Pasupathy, K., Ramakrishnan, S., Sanjayan, J., Rheology and elevated temperature performance of geopolymer foam concrete with varying PVA fibre dosage, Mater. Lett., 2022, 328: 133122. doi: 10.1016/J.MATLET.2022.133122
  • [21] ASTM C604, Standard test method for true specific gravity of refractory materials by gas-comparison pycnometer, american society for testing and materials (ASTM), West Conshohocken, PA, USA 618, 2012
  • [22] ISO, ISO 834: Fire resistance tests-elements of building construction, International Organization for Standardization, Geneva, Switzerland, 1999
  • [23] ASTM C39, Test method for compressive strength of cylindrical concrete specimens, ASTM International, West Conshohocken, 2017, doi: 10.1520/C0039_C0039M-17B
  • [24] Albidah, A., Abadel, A., Alrshoudi, F., Altheeb, A., Abbas, H., Al-Salloum, Y., Bond strength between concrete substrate and metakaolin geopolymer repair mortars at ambient and elevated temperatures, J. Mater. Res. Technol., 2020, 9: 10732–10745
  • [25] Elsanadedy, H., Almusallam, T., Al-Salloum, Y., Iqbal, R., Effect of high temperature on structural response of reinforced concrete circular columns strengthened with fiber reinforced polymer composites, J. Compos. Mater., 2017, 51: 333–355
  • [26] Albidah, A., Alqarni, A.S., Abbas, H., Almusallam, T., Al-Salloum, Y., Behavior of Metakaolin-Based geopolymer concrete at ambient and elevated temperatures, Constr. Build. Mater, 2022, 317: 125910
  • [27] Tadepalli, P.R., Mo, Y.L., Hsu, T.T.C., Vogel, J., Mechanical properties of steel fiber reinforced concrete beams, Structures Congress 2009: Don’t Mess with Structural Engineers: Expanding Our Role, ASCE proceeding, 2009, p. 1–10. doi: 10.1061/41031(341)115
  • [28] Thomas, J., Ramaswamy, A., Mechanical properties of steel fiber-reinforced concrete, J. Mater. Civ. Eng., 2007, 19: 385–392
  • [29] Alwesabi, E.A.H., Bakar, B.H.A., Alshaikh, I.M.H., Akil, H.M., Experimental investigation on mechanical properties of plain and rubberised concretes with steel–polypropylene hybrid fibre, Constr. Build. Mater., 2020, 233: 117194
  • [30] Batista, R.P., Trindade, A.C.C., Borges, P.H.R. Silva, F.A., Silica fume as precursor in the development of sustainable and high-performance MK-based alkali-activated materials reinforced with short PVA fibers, Front. Mater., 2019, 6: 77
  • [31] Ekaputri, J.J., Junaedi, S., Effect of curing temperature and fiber on metakaolin-based geopolymer, Procedia Eng., 2017, 171: 572–583
  • [32] Xiao, S., Cai, Y., Guo, Y., Lin, J., Liu, G., Lan, X., et al., Experimental study on axial compressive performance of polyvinyl alcohol fibers reinforced fly ash—slag geopolymer composites, Polymers (Basel), 2021, 14: 142
  • [33] Zhong, H., Zhang, M., Effect of recycled tyre polymer fibre on engineering properties of sustainable strain hardening geopolymer composites, Cem. Concr. Compos., 2021, 122: 104167
  • [34] Zhang, P., Feng, Z., Yuan, W., Hu, S., Yuan, P., Effect of PVA fiber on properties of geopolymer composites: A comprehensive review, J. Mater. Res. Technol., 2024, 29
  • [35] Kong, D.L.Y., Sanjayan, J.G., Damage behavior of geopolymer composites exposed to elevated temperatures, Cem. Concr. Compos., 2008, 30: 986–991
  • [36] Malik, M., Bhattacharyya, S.K., Barai, S.V., Microstructural changes in concrete: Postfire scenario, J. Mater. Civ. Eng., 2021, 33: 04020462
  • [37] Behnood, A., Ghandehari, M., Comparison of compressive and splitting tensile strength of highstrength concrete with and without polypropylene fibers heated to high temperatures, Fire Saf. J., 2009, 44: 1015–1022. doi: 10.1016/j.firesaf.2009.07.001
  • [38] Poon, C.-S., Azhar, S., Anson, M., Wong, Y.-L., Comparison of the strength and durability performance of normal-and high-strength pozzolanic concretes at elevated temperatures, Cem. Concr. Res., 2001, 31: 1291–1300
  • [39] Chang, Y.F., Chen, Y.H., Sheu, M.S., Yao, G.C., Residual stress–strain relationship for concrete after exposure to high temperatures, Cem. Concr. Res., 2006, 36: 1999–2005. doi: 10.1016/j.cemconres.2006.05.029
  • [40] Li, M., Qian, C., Sun, W., Mechanical properties of high-strength concrete after fire, Cem. Concr. Res., 2004, 34: 1001–1005. doi: 10.1016/j.cemconres.2003. 11.007
  • [41] Abadel, A., Elsanadedy, H., Almusallam, T., Alaskar, A., Abbas, H., Al-Salloum, Y., Residual compressive strength of plain and fiber reinforced concrete after exposure to different heating and cooling regimes, Eur. J. Environ. Civ. Eng., 2022, 26: 6746–6765
  • [42] Peng, Z., Kong, L.X., A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites, Polym. Degrad. Stab., 2007, 92: 1061–1071
  • [43] Sarker, P.K., Kelly, S., Yao, Z., Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete, Mater. Des., 2014, 63: 584–592
  • [44] Alshaikh, I.M.H., Abu Bakar, B.H., Alwesabi, E.A.H., Abadel, A.A., Alghamdi, H., Wasim, M., An experimental study on enhancing progressive collapse resistance using a steel fiber–reinforced concrete frame, J. Struct. Eng., 2022, 148: 04022087
  • [45] Alwesabi, E.A., Bakar, B.H.A., Alshaikh, I.M.H., Akil, H.M., Impact resistance of plain and rubberized concrete containing steel and polypropylene hybrid fiber, Mater. Today Commun., 2020, 25: 101640
  • [46] Alwesabi, E.A.H., Bakar, B.H.A., Alshaikh, I.M.H., Abadel, A.A., Alghamdi, H., Wasim, M., An experimental study of compressive toughness of steel–polypropylene hybrid fibre-reinforced concrete, Structures, 2022, 37: 379–388
  • [47] Zhang, P., Han, X., Zheng, Y., Wan, J., Hui, D., Effect of PVA fiber on mechanical properties of fly ash-based geopolymer concrete, Rev. Adv. Mater. Sci., 2021, 60: 418–437
  • [48] Abadel, A.A., Masmoudi, R., Khan, M.I., Axial behaviour of square and circular concrete columns confined with CFRP sheets under elevated temperatures: Comparison with welded-wire mesh steel confinement, Structures, 2022, 45: 126–144
  • [49] Zheng, J., Qi, L., Zheng, Y., Zheng, L., Mechanical properties and compressive constitutive model of steel fiber-reinforced geopolymer concrete, J. Build. Eng., 2023, 80: 108161
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66a3f404-0822-4e4a-8cc6-79db1462d08a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.