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1 INTRODUCTION 

When studying ship manoeuvres, such as circulation, 
Kempf's zigzag, safe passage, etc., the presence of 
adequate mathematical models of non-inertial forces 
and moment on the ship's hull plays a very important 
role. Many works are devoted to the construction of 
mathematical models of hydrodynamic forces and 
moment on the ship's hull [2–18][. At small drift 
angles 15  , polynomial models are mainly used 
to describe hydrodynamic forces and moments. The 
numerical characteristics of such models are obtained, 
as a rule (see, for example, [14–16]), based on 
processing the data of full-scale and model tests in 
wind tunnels, experimental basins, on rotary 
installations and on planar mechanisms. A similar 
approach to the construction of models of 
hydrodynamic forces is also implemented in the 
MMG (Maneuvering Modelling Group) method, 
which is described in the works [2–6, 17, 18]. There 
are also expressions for hydrodynamic derivatives up 

to the fourth order for a large type of fishing ships, 
dry cargo ships and tankers. One of the key stages of 
the above-mentioned approaches is the choice of 
methods for analysis and processing of experimental 
data. So, in the works [4, 11], using the least squares 
method with respect to one explanatory variable 
(regressor), hydrodynamic force models for ships 
with the value of the block coefficient (0.49;0.7).bС   
were constructed. 

In the work [2] for ships with the value of the block 
coefficient mainly from the range (0.7;0.9)bС   
models for the derivatives of longitudinal 
hydrodynamic forces were obtained using several 
regressors based on the minimum AIС (Akaike 
Information Criterion). 

This paper suggests a unified approach to the 
construction of models of hydrodynamic forces and 
moment, based on multivariate regression analysis, 
using Fisher's and Student's criteria [1]. 
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The analysis of existing models is carried out and 
adequate models of the derivatives of hydrodynamic 
forces and moment are obtained with a high level of 
significance both for the models as a whole and for 
each individual regressor for a wide range of values of 
the block coefficient: (0.49;0.9).bС   

2 GENERAL REPRESENTATIONS OF 
HYDRODYNAMIC FORCES 

The projections hX , hY  of the hydrodynamic forces 
on the coordinate axis associated with the ship and 
the moment hM  around the axis  are expressed as 
follows: 2 ,x

h hX v C=  2 ,
y

h hY v C=  2 ,m
h hM v C=      

where ( , ),x x
h hC C  =  ( , ),

y y
h hC C  =  ( , )m m

h hC C  =  
- the hydrodynamic characteristics of the ship's hull; 

, ,v   −  respectively, the magnitude of the resulting 
velocity, the drift angle and the angular velocity of the 
ship.  

The solvability of the corresponding systems of 
differential equations of the ship's motion [7–10, 12], 
determines the sufficient smoothness of their right-
hand sides, which gives grounds to assume the 
existence of Maclaurin series for the hydrodynamic 
characteristics of the ship ( { , , })p x y m=   
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p
jkC  are called hydrodynamic constants (or 

hydrodynamic derivatives) of forces and moment on 
the ship's hull. Representations (1) make it possible to 
approximate the hydrodynamic characteristics of the 
ship's hull by polynomials at small angles of drift and 
angular velocity. 

For example, if we restrict ourselves in expansion 
(1) to terms of the order not higher than third one and 
take into account the features of hydrodynamic forces 
[14–16], and the equality resulting from them 0x

jkC =  
at   ( , ) (0,0);(2,0);(1,1);j k  (0,2);(0,4)  and also 
equalities 0,

y
jkC =  0m

jkC =  at 
   ( , ) (1,0);(3,0);(0,1);(1,2);(2,1);(0,3)j k  , then we 
obtain the following representations 

0

2 2 4

20 11 02 40 ,x x x x x

h xC C C C C C   = − + + + +  (2) 

3 2 2 3
10 01 30 21 12 03 ,

y y y y y y y
hC C C C C C C      = + + + + +  

3 2 2 3
10 01 30 21 12 03 ,

y y y y y y y
hC C C C C C C      = + + + + +  

where 
0x

C  is the coefficient of water resistance to the 
straight-line motion of a vessel. 

The hydrodynamic constants in representations (2) 
are expressed through the geometric characteristics of 
the vessel by processing experimental data. 

3 METHOD FOR DETERMINING 
HYDRODYNAMIC CONSTANTS 

The following easily identifiable basic geometric 
characteristics of the ship are usually used to 
determine the hydrodynamic derivatives: L −  length 
on waterline, B −  breadth on current waterline, T −  
the midship draught and block coefficient .bC  From 
these parameters, we compose the determining 
regressors (factors):  

1 2 3 4, , , .b

B T T
C

L L B
   = = = =  (3) 

We use factors (3) as basic ones in quasilinear 
polynomial models (linear in coefficients) of 
hydrodynamic derivatives. It should be noted that, as 
a rule, basic regressors are used to build models of 
hydrodynamic derivatives (3), this is primarily due to 
their simplicity and availability. As the defining 
regressors (explanatory parameters) of the models, we 
will use the basic regressors (3) or their multipliers 
(products of powers), i.e., we will look for the 
hydrodynamic constants in the following form 
   ( ), ,p x y z=  

1 1

, , ( , 0, , 4)
j

lp
j j jjk l

j l

C j k




   
= =

= = =  . (4) 

Indicator  , coefficients of the regression model 

j  and indicators j , j  of the regressions are 
determined for each hydrodynamic constant p

jkC . 

When constructing dependencies (4), we will 
evaluate both the significance level of the model as a 
whole and the significance of each individual 
regressor. Consequently, the model will be considered 
adequate if the following criteria based on regression 
analysis and analysis of variance are met. 

1. The maximum possible value of the multiple 
correlation coefficient R  should be achieved:  

0 0, (0 1)R      (5) 

1  where parameter 0  determines the level of 
connection (correlation) of hydrodynamic 
derivatives p

jkC  with regressors included in 
representations (4). Moreover, if 0(0.5 0.7)  , 
the connection is considered average (satisfactory), 
if 0(0.7 0.8)  , the connection turns out to be 
high (good) and if 0(0.8 1)  , then the 
connection is considered very high (excellent). 
Otherwise, the connection cannot be considered 
acceptable. 

2. The statistical overall significance in the whole of 
each model (4) will be determined based on the 
Fisher criterion: 

(1 , 1, ),c nk FF F m n m − − −  (6) 

1  where 
2

2 11
c

R n m
F

mR

−
=

−−
 is an observed statistics 

with the following Fisher-Snedecor distribution (F-
distribution); m −  the number of non-zero 
coefficients of the models (4); n −  sample size; 

(1 , 1, )nk FF m n m− − −  is a critical value of the F-
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distribution for the significance level F . The less 

F  is, at which inequality (3.4) is satisfied, the 
higher the overall statistical significance of the 
model is. Significance level 0.05.F   is 
considered excellent. 

3. The level of significance of statistics cF  will be 
determined using the probability 

( (1 , 1, )).F c nk FP F F m n m =  − − −  Moreover, the 
less F  is, the higher the level of significance of 
the statistics is. The level of significance can be 
considered acceptable if the following condition is 
fulfilled: 

.F F   (7) 

4. Standard error j  of the regressor j  must 
satisfy the condition: 

.j j   (8) 

5. The statistical significance of each of the regression 
coefficients is determined based on the Student's t-
test: 

, j
j kr j

j
t t t




 
 = 

 
 (9) 

1  where (1 , )j st t n m= − −  is a critical value of 
the Student's distribution for the level of 
significance .s  The less of s , at which 
inequality (8) is satisfied, the higher is the overall 
statistical significance of the coefficients of the 
model is. The level of 0.05.s   can be 
considered excellent. 

6. The significance level of the model regressors is 
determined using the probability 

( (1 , )).j j kr sP t t n m =  − −  In this case, the less 

j  is, the higher the level of significance of the 
corresponding regressor is. The level of 
significance can be considered acceptable if the 
following condition is fulfilled: 

.j s    (10) 

7. The absence of multicollinearity of the obtained 
models, i.e., the absence of regressors with a high 
pairwise correlation: 

, , ,
j l mkR j l     (10*) 

1  where ,j l
R   is a coefficient of pair correlation 

of regressors, mk  is an indicator of the level of 
correlation of regressors. It is believed that 
multicollinearity is absent in the model if mk  
does not exceed 0.7 0.8.   

When constructing models, the condition (5) is the 
key one. However, the obtained dependencies must 
be statistically significant with a sufficiently high level 
of significance, i.e. conditions (6) and (7) must be 
satisfied with a sufficiently small value of .F  The 
condition (8) allows us to discard insignificant 
regressors, conditions (9) and (10), with a sufficiently 
small value of s , allow us to assess the significance 

and significance level of each regressor in the model 
respectively. Condition (10*) makes it possible to 
exclude regressors leading to multicollinearity of the 
obtained models. 

To construct mathematical models of the 
derivatives of hydrodynamic forces, we will apply the 
procedure of adding regressors (explanatory 
parameters). In this regard, firstly, the most significant 
regressors of the model are determined (i.e., the 
regressors with the highest values of the pair 
correlation coefficients with the corresponding 
hydrodynamic derivative). Then, starting with some 
minimal regression model, with the most significant 
regressors, we add new defining regressors until 
criteria 1) - 6) are met. In this case, at each stage, we 
check the fulfilment of condition (10*). 

It should be noted that several adequate regression 
models can be obtained in this way. In this case, we 
will select those models for which the values of 

,F s   and   is minimal, and the value of the 
multiple correlation coefficient R  is the maximum 
possible. 

4 ANALYSIS OF EXISTING MODELS OF 
HYDRODYNAMIC CONSTANTS  

Using the above-mentioned approach, we will analyse 
the existing models of hydrodynamic forces and 
moment on the ship's hull. To determine the 
coefficients of the models, we will use the 
experimental databases for hydrodynamic derivatives 
of various types of vessels in deep water, given in the 
works [2, 4, 18]. 

In particular, using the experimental data of works 
[5, 18] (sample  14 12; (0.5;0.7) )bV n C= =  , and 
work [2] (sample  15 18; (0.5;0.9) )bV n C= =  , 
depending on the values of the block coefficient bC , 
for the derivatives of the longitudinal hydrodynamic 
force, 3 samples (volume n) were compiled: 

11 { 30; (0.5;0.9)}

12 { 14; (0.5;0.7)}

13 { 16; (0.7;0.9)}

b

b

b

V n C

V n C

V n C

= = 

= = 

= = 

, 

In works [4, 18], using the regressor 0 1 2 = , 
models of longitudinal hydrodynamic forces (models 
A) were obtained. The coefficients of these models 
will be determined using samples V14, V11, V12, V13. 

Models А:  

20 0

11 0

1.15 0.18

1.01 0.18
,

1.23 0.2

0.62 0.04

1.91 0.08

1.6 0.04
,

1.77 0.06

0.1 0.17

x

x
y

C

C m





   
   
   

= −   
   
   − −   

   
   
   

− = − +   
   
   −   
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02 0

40 0

0.09 0.008

0.07 0.017
,

0.03 0.012

0.65 0.098

6.68 1.1

5.41 1.11

7.5 1.18

0.43 0.43

x
G y

x

C x m

C





−   
   

−   
 + = −   

−   
   −   

−   
   
−   

= +   
−   

      

 

In the work [2], with the use of the minimum AIC 
(Akaike Information Criterion), models of 
longitudinal hydrodynamic forces (models B) were 
obtained. The coefficients of these models are 
determined using samples V15, V11, V12, V13. 

Models В: 

20 1 2 1 2

2
40 1

7.14 38.4 46.6 5.94

0.63 2.48 3.1 0.55
,

1.41 4.94 7.35 1.01

15.67 75.31 91.19 12.91

0.0182 0.0826

0.0169

0.0159

0.0078

x

x

C

C

   

−

       
       
       

= + − −       
       
       − − − −       

− 
 

− 
= + 
 
  

02

0 3 0 3

0.701

0.139 0.021
,

0.21 0.032

0.242 0.679

5.2 14.7 107.8

0.087 0.672 3.093
,

0.075 0.952 3.972

5.139 15.36 113.94

x
G yC x m

   

   
   
   

 + = −   
−   

      

     
     
     

− − +     
     
          

 

The upper coefficients in models A and B were 
obtained, respectively, in the works [4, 18] and [2] 
based on the experimental data presented there 
(samples V14, V15, respectively). The second row of 
coefficients corresponds to the V11 sample, the third 
to the V12 sample and the fourth to the V13 sample. 

Tables 1 and 2 show the correlation characteristics 
of models A and B, respectively. 

Table 1. Analysis of the model A [18] _______________________________________________ 
       R   F   Cond. (8)  s  _______________________________________________ 

20
xC     V14 0.7  10-2   +    0.01 

     V11 0.55  2·10-3   +    2·10-3 
     V12 0.72  4·10-3   +    5·10-3 
     V13 0.16  0.55   -    0.8 

11
x

yC m−    V14 0.9  10-4   +    0.05 
     V11 0.81  10-7   +    0.2 
     V12 0.91  10-5   +    0.1 
     V13 0.03  0.91   -    0.2 

02
x

G yC x m +   V14 0.14  0.66   -    0.85 
     V11 0.12  0.55   -    0.55 
     V12 0.05  0.86   -    0.86 
     V13 0.34  0.2   +    0.2 

40
xC     V14 0.7  0.00   +    0.013 

     V11 0.41  0.03   +    0.025 
     V12 0.73  3·10-3   +    2·10-3 
     V13 0.01  0.96   -    0.96 _______________________________________________ 

 

Analysis of the data given in Table 1 shows that for 
the values of the block coefficient (0.5;0.7),bС   
model A establishes a good correlation between the 
hydrodynamic derivatives 20

xC  and 40
xC  with the 

regressor ( 0.7)R  , and for the hydrodynamic 
derivative 11

x
yC m−  this interconnection turns out to 

be completely excellent ( 0.9)R  . 

In all cases, there is a fairly high level of 
significance of the models and regressor. For the 
entire range of values of the block coefficient 

(0.5;0.9),bС   the model for 20
xC  establishes a 

satisfactory correlation with the regressor, for 

11
x

yC m−  - excellent. 

However, the significance of the regressor for 

11
x

yC m−  is not high: 0.2.s =  In all other cases, 
model A turns out to be inadequate. In particular, for 
the hydrodynamic derivative 02

x
G yC x m +  turns out to 

be inadequate for all ranges of variation of the block 
coefficient. 

Analysis of the data given in Table 2 shows that for 
the hydrodynamic constants 20

xC  and 40
xC  models B 

are not adequate for all ranges of change in the values 
of the block coefficient. As for the hydrodynamic 
constant 11

x
yC m− , a good correlation 

( 0.71 0.92),R =   is observed for the range 
(0.5;0.9),bС   for the V15 sample, however, there is 

multicollinearity of the regressors: 0.92mk = . 

The latter leads to the fact that with an increase in 
the sample size V11, the model turns out to be 
inadequate with a low level of significance of the 
regressors. The same is observed for the ranges 

(0.7;0.9),bС   and (0.5;0.7).bС   As for the 
hydrodynamic constant 02

x
G yC x m + , model A can 

only be used for (0.7;0.9).bС   

Table 2. Analysis of the model B [2] _______________________________________________ 
       R   F   Cond. (8) s  mk  _______________________________________________ 

20
xC     V15 0.59  0.12   +   0.05 0.9 

     V11 0.63  0.01   -   0.4 0.79 
     V12 0.75  0.07   -   0.5 0.98 
     V13 0.53  0.25   +   0.23 0.93 

11
x

yC m−    V15 0.71  0.05   +   0.05 0.92 
     V11 0.81  5·10-7  -   0.48 0.78 
     V12 0.61  0.06   +   0.05 0.9 
     V13 0.92  3·10-5  +   0.25 0.89 

02
x

G yC x m +   V15 0.52  0.03   +   0.03 0.64 
     V11 0.23  0.7   -   0.76 0.81 
     V12 0.33  0.75   -   0.93 0.99 
     V13 0.75  0.02   +   0.04 0.42 

40
xC     V15 0.30  0.23   -   0.87 - 

     V11 0.42  0.02   -   0.53 - 
     V12 0.51  0.07   -   0.41 - 
     V13 0.10  0.7   -   0.71 - _______________________________________________ 
 

To analyse the existing models of the derivatives 
of the transverse hydrodynamic forces, we used the 
experimental data of the works [4, 18], from which, 
depending on the values of the block coefficient bC , 
three samples were made for the derivatives of the 
transverse hydrodynamic forces: 

21 { 33; (0.49;0.9)}

22 { 20; (0.49;0.7)}

23 { 13; (0.7;0.9)}

b

b

b

V n C

V n C

V n C

= = 

= = 

= = 

 

In the work [4], using regressors (3), models of 
transverse hydrodynamic forces (models C) were 
obtained. We will calculate the coefficients of these 
models based on samples V21, V22, V23. 
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Models С 

1 2 1 210 01

1 412

30

1.90 0.11 1.5

3.33 0.02 , 1.28

1.93 0.10 1.45

0.01 3.13 0.26

0.04 , 2.19 (1 ) 1.05 .

0.03 5.36 0.01

354

256

503

y y
x

y

y

C C m m

C

C

   

 

     
     

 = + − − = − +     
     
     

     
     

+ − = − − +     
     −     




= 
−

2
1 4 1 4

2
1 2 1 221

86.3 2.47

((1 ) ) 52.1 (1 ) 0.31 ,

34.6 1.17

202.5 69.5 5.48

160.1 ( ) 57 4.78 ,

96.6 22.8 1.53

y
C

   

   

−    
    

− + − +    
    −    

     
     

= − + −     
     − − −     

 

The upper coefficients in models C and D 
correspond to the V21 sample, the second and third 
respectively to the V22, V23 samples. 

On the same samples, the coefficients of the 
models of transverse hydrodynamic forces (model D), 
proposed in the works [3–6, 18], were calculated: 

Models D 

1 2 2 1 410 12

1 201

1
230

21

1.74 2.68 5.16

1.17 3.84 , 5.12 (1 ) ,

2.12 1.47 5.48

1.46

1.31 ,

1.63

0.5 0.98

0.58 0.87 ,

0.08 0.52
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Tables 3 and 4 show the main correlation 
characteristics of the dependences C and D. 

Table 3. Analysis of the model C _______________________________________________ 
       R   F   Cond. (8)  s  _______________________________________________ 

10
yC     V21 0.72  3·10-6   +    0.007 

     V22 0.66  0.002   -    0.85 
     V23 0.71  0.007   +    0.25 

01
y

xC m m − −  V21 0.78  10-16   +    0.85 
     V22 0.73  2·10-4   -    0.9 
     V23 0.91  1·10-5   -    0.4 

30
yC     V21 0.58  2·10-3   +    4·10-2 

     V22 0.44  0.16   -    0.94 
     V23 0.86  1·10-3   +    0.29 

21
yC     V21 0.78  10-6   +    4·10-4 

     V22 0.68  5·10-3   +    0.06 
     V23 0.67  5·10-2   -    0.49 

12
yC     V21 0.52  2·10-3   +    0.02 

     V22 0.35  0.14   +    0.14 
     V23 0.74  5·10-3   -    0.94 _______________________________________________ 

Analysis of models C shows that not all these 
models of the derivatives of transverse hydrodynamic 
forces are adequate. 

Mathematical models have good correlation 
characteristics with good regression indicators only 
for constant 10

y
C  when (0.49;0.9)bС   and 

(0.7;0.9),bС   for constant 30
y

C  when (0.7;0.9)bС   
and for constant 12

y
C  when (0.49;0.9)bС   and 

(0.49;0.7)bС  . 

Table 4. Analysis of the model D _______________________________________________ 
       R   F   Cond. (8) s  mk  _______________________________________________ 

10
yC     V21 0.99  9·10-29  +   5·10-7 0.27 

     V22 0.99  7·10-17  +   0.01 0.64 
     V23 0.99  8·10-11  +   0.07 0.4 

01
y

xC m m − −  V21 0.97  2·10-21  +   10-21 - 
     V22 0.95  6·10-11  +   10-16 - 
     V23 0.99  10-14   +   10-15 - 

30
yC     V21 0.4  0.02   -   0.41 - 

     V22 0.52  0.02   -   0.51 - 
     V23 0.1  0.78   -   0.8 - 

21
yC     V21 0.42  0.02   +   0.02 - 

     V22 0.64  2·10-3   +   2·10-3 - 
     V23 0.19  0.7   -   0.7 - 

12
yC     V21 0.91  9·10-14  +   10-13 - 

     V22 0.91  3·10-8   +   2·10-8 - 
     V23 0.97  4·10-8   +   1·10-8 - _______________________________________________ 
 

For models D mathematical models of constants 

10
y

C , 01
y

xC m m − −  and 12
y

C  have excellent regression 
indicators for the entire range of values of the block 
coefficient bC . Mathematical models for the rest of 
the hydrodynamic constants are inadequate. 

To analyse the mathematical models of the 
derivatives of the moment of hydrodynamic forces, 
we used the experimental data of the works [4, 18] 
and made three samples for the derivatives of the 
moment depending on the values of the block 
coefficient: 

31 { 33; (0.49;0.9)}

32 { 20; (0.49;0.7)}

33 { 13; (0.7;0.9)}

b

b

b

V n C

V n C

V n C

= = 

= = 

= = 

 

In the work [4], using regressors (3), models of 
transverse hydrodynamic forces (models E) were 
written. We will calculate the coefficients of these 
models based on samples V31, V32, V33. 

Models E 
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The upper coefficients in the models E correspond 
to the V21 sample, the second and third correspond to 
the V22, V23 samples respectively. 
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On the same samples, the coefficients of the 
models of transverse hydrodynamic forces (model F), 
suggested in the works [3–6, 18], were calculated: 

Models B 

30 1

21 1 2

1
12 1 2

03 1 2

0.9 0.72
,

1.79 1.22

1.51 0.54
,

0.32 0.52

0.023 0.039
(1 ) ,

0.32 0.013

0.28 0.056
.

0.28 0.06

m

m

m

m

C

C

C

C



 

 

 

−

   
= − −   

   

   
= −   
   

−   
= − +   
   

   
= −   
   

 

The upper coefficients in the F model are obtained 
on the V31 sample while the second ones are obtained 
on the V32 sample. 

When constructing models of hydrodynamic 
derivatives 03

y
C , 30

mC , 12
mC , in the work [4], the 

parameter 1(1 )(1 )a wa paC C −= − −  is also used as the 
basic regressor, where waC  and paC  are the 
waterplane area coefficient and prismatic coefficient 
of aft half hull between APP and ship station five. The 
coefficients are calculated as: 1( ) ,wa wa a aC A L B −=   

1( ) ,pa a a aC A L −=   where waA  is the water plane 
area of the aft section, aA  is the cross-sectional area 
equal to the largest underwater section of the aft hull, 

a  is the displacement of the aft hull, aB  is the 
vessel’s breadth of the aft hull and aL  is its length. 

However, the analysis of these dependencies 
showed their poor correlation features. Moreover, the 
data for calculating the parameter a  are not always 
available in the reference literature. 

Tables 5 and 6 show the correlation characteristics 
of models E and F, respectively. 

For models E mathematical models of 
hydrodynamic constants 10

mC , 01
m

GC x m −  and 03
mC   

have excellent regression indicators for the entire 
range of values of the block coefficient bС . The 
mathematical model for 21

mC  is inadequate. 

Analysis of the F models shows that not all these 
models of the derivatives of the transverse 
hydrodynamic forces are adequate. Mathematical 
models only for the hydrodynamic constant 03

mC  
have quite good correlation characteristics and good 
regression indicators.  

Table 5. Analysis of the model E _______________________________________________ 
       R   F   Cond. (8)  s  _______________________________________________ 

10
mC     V21 0.91  2·10-13  +    8·10-14 

     V22 0.91  2·10-08  +    9·10-09 
     V23 0.99  1·10-14  +    10-14 

01
m

GC x m −  V21 0.88  3·10-9   +    8·10-5 
     V22 0.99  5·10-14  +    4·10-10 
     V23 0.77  8·10-3   +    0.07 

21
mC     V21 0.55  0.005   +    0.003 

     V22 0.11  0.91   -    0.9 
     V23 0.72  0.03   -    0.4 

03
mC     V21 0.84  10-8   +    5·10-5 

     V22 0.88  4·10-6   +    0.004 
     V23 0.91  2·10-4   +    0.04 _______________________________________________ 

 

Table 6. Analysis of the model F _______________________________________________ 
       R   F   Cond. (8)  s  _______________________________________________ 

10
mC     V21 0.4  0.02   +    0.02 

     V22 0.34  0.14   +    0.14 

01
m

GC x m −  V21 0.28  0.11   +    8·10-5 
     V22 0.1  0.67   -    0.67 

21
mC     V21 0.25  0.16   +    0.26 

     V22 0.06  0.8   -    0.83 

03
mC     V21 0.7  6·10-6   +    6·10-6 

     V22 0.79  4·10-5   +    4·10-5 _______________________________________________ 
 

Thus, the analysis of the existing models for the 
derivatives of hydrodynamic forces and moment 
shows that many of them cannot be used for the entire 
range of variation of the values of the block coefficient 

bC  . Only some of them can provided a fairly good 
correlation on limited ranges. Obviously, a univariate 
correlation analysis cannot provide the construction of 
adequate models with a high level of significance for 
the entire range of change in values bC  As for the 
approach of the work [2] for mathematical models of 
longitudinal hydrodynamic forces, then, it is obvious 
that the use of the minimum criterion AIC only cannot 
ensure the fulfilment of criteria 1) - 7). 

5 CONSTRUCTION OF NEW MATHEMATICAL 
MODELS OF HYDRODYNAMIC FORCES AND 
MOMENTS 

The analysis of the known models indicates that there 
is a need to build new adequate models of the 
derivatives of the longitudinal hydrodynamic forces 
on the ship's hull with a high level of significance that 
meet the criteria 1) - 7). The standard scheme of 
multivariate regression analysis [1], and the method 
described in the second section, made it possible to 
construct several new adequate models of the 
derivatives of longitudinal hydrodynamic forces and 
moment with high correlation indicators. Some of 
these models having the highest level of correlation 
and levels of significance as well as the standard 
errors of the regressors of which satisfy condition (7) 
are given below. 

To construct the hydrodynamic derivatives of 
transverse forces, we use samples V11, V12, V13. 

In particular, for the constant 20
xC  for the entire 

range of variation of the block coefficient 
(0.5;0.9)bС   the following representations should be 

highlighted: 

20 1 1 4 1 2 30.086 0.389(1 ) 5.599 ,xC     = − − − +  (11) 

20 1 1 2 30.173 3.74 .xC   = − +  (12) 

For the range of values of the block coefficient 
(0.5;0.7)bС   the following models provide excellent 

correlation: 

20 1 1 2 30.173 4.855 ,xC   = − +  (13) 
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20 1 1 2 30.528 6.088 ,xC   = − +  (14) 

20 1 2 1 42.529(1 ) 1.714(1 ) ,xC    = − − −  (15) 

For the range of values of the block coefficient 
(0.7;0.9)bС  , the following model can be also used: 

20 1 4 1 2 32.529(1 ) 15.086 .xC    = − −  (16) 

Table 7 shows the correlation characteristics of 
models (11) - (16). 

Table 7. Analysis of the model for 20
xC . _______________________________________________ 

       R   F   s   mk  _______________________________________________ 
(11)   V11  0.8  5·10-5  0.02  0.5 
(12)      0.75  3·10-4  3·10-4  0.5 
(13)   V12  0.81  0.003  0.003  0.04 
(14)      0.84  0.003  7·10-4 0.6 
(15)      0.85  0.003  5·10-4 0.79 
(16)   V13  0.8  0.004  0.14  0.59 _______________________________________________ 
 

For the constant 11
x

yC m−  for the entire range of 
variation of the block coefficient (0.5;0.9)bС   the 
following representations should be highlighted: 

11 0 30.978 0.603 ,x
yC m  − = − −  (17) 

11 1 4 2 30.504 3.086 .x
yC m    − = − −  (18) 

For the range of values of the coefficient of total 
completeness (0.5;0.7)bС   the following 
dependence also provides excellent correlation  

11 1 4 2 30.396 3.634 .x
yC m    − = − −  (19) 

For the range of values of the block coefficient 
(0.7;0.9)bС   the following model can be also used  

2 2 2
11 0 0 36.344 3.634 .x

yC m   − = − −  (20) 

Table 8 shows the correlation characteristics of 
models (17) - (20). 

Table 8. Analysis of the model for 11
x

yC m− . _______________________________________________ 
       R   F   s   mk  _______________________________________________ 
(17)   V11  0.98  10-17  0.04  0.68 
(18)      0.98  10-16  5·10-5  0.14 
(19)   V12  0.99  10-8  5·10-5  0.56 
(20)   V13  0.98  10-12  0.14  0.38 _______________________________________________ 
 

For a constant 02
x

G yC x m +  for the range of 
variation of the block coefficient (0.5;0.7)bС   the 
following representations should be highlighted: 

02 1 1 2 1 40.07 0.34(1 ) 0.37 ,x
G yC x m      + = + − −  (21) 

02 1 2 1 40.303(1 ) 0.166 .x
G yC x m     + = − −  (22) 

The following model is also adequate for the range 
(0.7;0.9)bС   : 

02 1 0 1 30.49 9.68 0.484.x
G yC x m     + = + −  (23) 

Table 9 shows the correlation characteristics of 
models (21) - (23). 

Table 9. Analysis of the model for 02
x

G yC x m +  _______________________________________________ 
       R   F   s   mk  _______________________________________________ 
(21)   V12  0.68  0.07  0.24  0.586 
(22)      0.68  0.05  0.08  0.378 
(23)   V13  0.66  0.02  0.03  0.271 _______________________________________________ 
 

For the constant 40
xC  for the entire range of 

variation of the block coefficient (0.5;0.9)bС   the 
following representations should be highlighted: 

40 1 4 1 2 32.85 33.225 ,xC   = −  (24) 

40 1 1 2 30.899 26.105 ,xC   = −  (25) 

40 1 4 1 34.89 17.463 .xC  = −  (26) 

For the range of values of the block coefficient 
(0.7;0.9)bС   the following model provides excellent 

correlation: 

40 1 2 3 41.78 35.83 ,xC   = −  (27) 

40 1 4 1 35 18.057 .xC    = −  (28) 

For the range of values of the block coefficient 
(0.7;0.9)bС   the following model can be also used: 

40 1 2 1 2 326.973(1 ) 167.485 .xC    = − − +  (29) 

Table 10 shows the correlation characteristics of 
models (24) - (29). 

Table 10. Analysis of the model for 40
xC   _______________________________________________ 

       R   F   s   mk  _______________________________________________ 
(32)   V11  0.8  10-6  10-4  0.25 
(33)      0.79  10-6  0.002  0.28 
(34)      0.79  10-6  10-3  0.55 
(35)   V12  0.79  0.004  0.003  0.75 
(36)      0.75  0.009  0.006  0.75 
(37)   V13  0.86  10-4  0.12  0.73 _______________________________________________ 
 

To construct the hydrodynamic derivatives of 
transverse forces, we use samples V21, V22, V23. 

For the constant 10
y

C  for the entire range of 
variation of the block coefficient (0.5;0.9)bС   the 
following representations should be highlighted: 

2 1 2 310 1.36 16.79 .
y

C   = +  (30) 
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1 4 1 2 310 0.94(1 ) 39.2 ,
y

C    = − +  (31) 

1 1 2 310 0.33 19.69 ,
y

C   = +  (32) 

1 210 0.13 1.39 .
y

C  = +  (33) 

For the range of values of the block coefficient 
(0.5;0.7)bС   the following model provides excellent 

correlation: 

2 1 2 310 1.12 24.15 ,
y

C   = +  (34) 

1 4 1 2 310 1.27(1 ) 28.2 ,
y

C    = − +  (35) 

1 1 2 310 0.24 34.02 .
y

C   = +  (36) 

For the range of values of the block coefficient 
(0.7;0.9)bС   the following models can be also used: 

2 1 2 310 1.61 11.23 ,
y

C   = +  (37) 

1 4 1 2 310 2.75(1 ) 47.4 ,
y

C    = − +  (38) 

1 1 2 310 0.38 10.87 .
y

C   = +  (39) 

Table 11 shows the correlation characteristics of 
models (30) - (39). 

Table 11. Analysis of the model for 10
y

C  _______________________________________________ 
       R   F   s   mk  _______________________________________________ 
(30)   V21  0.99  10-28  10-5  0.65 
(31)      0.97  10-19  10-3  0.06 
(32)      0.99  10-24  10-4  0.55 
(33)      0.99  10-24  0.1  0.32 
(34)   V22  0.99  10-16  10-4  0.72 
(35)      0.99  10-15  10-3  0.57 
(36)      0.98  10-14  10-4  0.34 
(37)   V21  0.99  10-9  0.04  0.51 
(38)      0.97  10-6  0.04  0.38 
(39)      0.99  10-10  0.02  0.72 _______________________________________________ 
 

For the entire range of variation of the block 
coefficient (0.5;0.9)bС   the following 
representations should be highlighted 

1 1 2 301 0.21 4.76 ,
y

xC m m    − − = − −  (40) 

1 301 0.21 0.8 ,
y

xC m m   − − = − −  (41) 

1 201 0.12 0.54 .
y

xC m m   − − = − −  (42) 

For the range of values of the block coefficient 
(0.5;0.7)bС   the following model provides excellent 

correlation: 

1 1 2 301 0.16 5.85 ,
y

xC m m    − − = − −  (43) 

1 301 0.09 1.37 .
y

xC m m   − − = − −  (44) 

Table 12 shows the correlation characteristics of 
models (40) - (44). 

 

Table 12. Analysis of the model for 01
y

xC m m − −  _______________________________________________ 
       R   F   s   mk  _______________________________________________ 
(40)   V21  0.97  10-18  10-4  0.04 
(41)      0.96  10-16  10-2  0.12 
(42)      0.96  10-17  10-2  0.07 
(43)   V22  0.96  10-9  10-4  0.15 
(44)      0.95  10-17  0.04  0.21 _______________________________________________ 
 

For the entire range of variation of the block 
coefficient (0.5;0.9)bС   the following 
representation should be highlighted: 

1 4 1 2 330 24.09(1 ) 99.72 .
y

C     = − −  (45) 

For the range of values of the block coefficient 
(0.5;0.7)bС   the following models provide excellent 

correlation: 

1 4 1 2 330 24.82(1 ) 116.47 ,
y

C    = − −  (46) 

1 330 6.19 17.62 .
y

C  = −  (47) 

For the range of values of the coefficient of total 
completeness (0.7;0.9)bС   the following models 
can be also used: 

1 4 1 2 330 10.82(1 ) 64.99 ,
y

C     = − +  (48) 

330 22.2 ,
y

C =  (49) 

2
1 2 3 1 430 64.43 166.62((1 ) ) .

y
C    = − −  (50) 

Table 13 shows the correlation characteristics of 
models (48) - (52). 

Table 13. Analysis of the model for 30 .
y

C  _______________________________________________ 
       R   F   s   mk  _______________________________________________ 
(53)   V21  0.84  10-7  0.005  0.57 
(54)   V22  0.84  10-4  0.02  0.77 
(55)      0.88  10-5  0.04  0.21 
(56)   V23  0.96  10-5  0.081  0.38 
(57)      0.96  10-6  10-06  - 
(58)      0.98  10-7  0.004  0.36 _______________________________________________ 
 

For the entire range of variation of the block 
coefficient (0.5;0.9)bС   the following 
representation should be highlighted: 

1 1 221 3.26 8.92 3.52,
y

C  = + −  (51) 
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1 221 4.87 5.14 4.44.
y

C  = + −  (52) 

For the range of values of the block coefficient 
(0.5;0.7)bС   the following models provide excellent 

correlation: 

1 1 221 3.12 10.3 ,
y

C  = − +  (53) 

1 1 421 4.83 9.77 .
y

C  = − +  (54) 

For the range of values of the block coefficient 
(0.7;0.9)bС   the following models can be also used: 

1 1 221 0.93 7.15 ,
y

C   = − +  (55) 

1 2 1 421 3.74 4.27(1 ) .
y

C   = − −  (56) 

Table 14 shows the correlation characteristics of 
models (51) - (56). 

Table 14. Analysis of the model for 21.
y

C  _______________________________________________ 
       R   F   s   mk  _______________________________________________ 
(51)   V21  0.75  10-5  0.003  0.46 
(52)      0.75  10-5  0.005  0.08 
(53)   V22  0.78  10-2  0.004  0.63 
(54)      0.78  10-2  0.003  0.63 
(55)   V23  0.91  10-2  0.07  0.72 
(56)      0.91  10-4  0.04  0.12 _______________________________________________ 
 

For the entire range of variation of the block 
coefficient (0.5;0.9)bС   the following 
representation should be highlighted: 

3 1 412 6.96 9.07(1 ) .
y

C   = − + −  (57) 

2 2
1 1 412 0.52 16.7(1 ) .

y
C   = + −  (58) 

For the range of values of the block coefficient 
(0.5;0.7)bС   the following models provide excellent 

correlation: 

1 212 1.78 1.47 ,
y

C  = −  (59) 

1 1 212 1.98 3.55 .
y

C   = −  (60) 

For the range of values of the block coefficient 
(0.7;0.9)bС   the following models can be also used: 

1 212 1.55 4.95 ,
y

C  = −  (61) 

1 1 212 1.25 4.69 .
y

C  = −  (62) 

Table 15 shows the correlation characteristics of 
models (57) - (62). 

 

Table 15. Analysis of the model for 12.
y

C  _______________________________________________ 
       R   F   s   mk  _______________________________________________ 
(65)   V21  0.95  10-15  10-4  0.71 
(66)      0.89  10-10  10-4  0.62 
(67)   V22  0.96  10-9  10-2  0.28 
(68)      0.96  10-9  0.07  0.03 
(69)   V23  0.97  10-6  0.01  0.46 
(70)      0.96  10-5  0.03  0.72 _______________________________________________ 
 

For this hydrodynamic derivative it was possible 
to obtain the following models with satisfactory 
statistical characteristics: 

1 1 403

0.1 0.22

0.23 0.49 .

0.07 0.22

y
C   

   
   

= − +   
   
   

 (63) 

2
1 4 1 403

0.6 2.06

0.86 3.07 ( ) .

0.31 1.12

y
C    

   
   

= − +   
   
   

 (64) 

The upper lines in the dependencies (63) and (64) 
were obtained for the V21 sample; the second and 
third ones were obtained for the V22 and V23 samples 
respectively. 

Table 16 shows the correlation characteristics of 
models (63) - (64). 

Table 16. Analysis of the model for 03.
y

C  _______________________________________________ 
       R   F   s   mk  _______________________________________________ 
(63)   V21  0.54  5·10-3  0.09  0.4 
    V22  0.74  9·10-4  0.02  0.63 
    V23  0.62  0.08  0.05  0.28 
(64)   V21  0.65  3·10-4  5·10-4  - 
    V22  0.71  3·10-3  6·10-3  - 
    V23  0.64  0.06  0.03  - _______________________________________________ 
 

To construct the hydrodynamic derivatives of the 
moments we will use the samples V31, V32, V33. 

The following models have excellent regression 
characteristics for the constant 10

mC  for all samples: 

10 1 3

2.15

1.91 ,

2.64

mC  

 
 

=  
 
 

 (65) 

10 1 3

0.08 0.66 0

0.09 0.59 0 .

0.11 1.96 0.08

mC  

     
     

= + −     
     
     

 (66) 

Table 17 shows the correlation characteristics of 
models (65) and (66). 
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Table 17. Analysis of the model for 10
mC  _______________________________________________ 

       R   F   s   mk  _______________________________________________ 
(65)   V31  0.96  10-18  10-18  - 
    V32  0.93  10-8  10-9  - 
    V33  0.99  10-12  10-12  - 
(66)   V31  0.96  10-16  10-4  0.12 
    V32  0.95  10-8  3·10-3  0.22 
    V33  0.99  10-8  0.04  0.62 _______________________________________________ 
 

For the constant 01
m

GC x m −  for the entire range of 
variation of the block coefficient (0.5;0.9)bС   the 
following representations have excellent correlation 
characteristics: 

01 10.06 ,m
G xC x m  − = −  (67) 

01 40.13 ,m
GC x m  − = −  (68) 

01 1 40.37(1 ) ,m
GC x m   − = − −  (69) 

2 2
01 1 3 1 33.14(1 ) 34.93(1 ) .m

GC x m     − = − − + −  (70) 

For the range of values of the block coefficient 
(0.5;0.7)bС    the following models provide good 

correlation: 

01 10.08 ,m
GC x m  − = −  (71) 

2 2
01 1 3 1 32.92(1 ) 31.62(1 ) .m

GC x m     − = − − + −  (72) 

For the range of values of the block coefficient 
(0.7;0.9)bС   the following dependence can be also 

used: 

01 10.05 .m
GC x m  − = −  (73) 

Table 18 shows the correlation characteristics of 
the models (67) - (73). 

Table 18. Analysis of the model for 01 .m
GC x m −  _______________________________________________ 

       R   F   s   mk  _______________________________________________ 
(67)   V21  0.86  10-9  0.08  - 
(68)      0.85  10-9  10-9  - 
(69)      0.85  10-9  10-9  - 
(70)      0.88  10-10  10-5  - 
(71)   V22  0.97  10-12  10-12  - 
(72)      0.98  10-9  10-9  - 
(73)   V23  0.75  10-2  10-2  - _______________________________________________ 
 

For the constant 30
mC  for the entire range of 

variation of the block coefficient (0.5;0.9)bС   and 
for values (0.5;0.7)bС   the following models have 
good correlation features (the upper coefficients are 
the sample V31, the lower ones are V32): 

30 1 2

2.27
(1 ) ,

2.45

mC  
 

= − 
 

 (74) 

30 1 4

1.33
(1 ) ,

1.42

mC  
 

= − 
 

 (75) 

30 1 3

5.68
(1 ) ,

5.83

mC  
 

= − 
 

 (76) 

2
1 1

30 11 2 2
2 4 2 4

1.83 1.59 0.48(1 ) (1 )
.

3.33 2.6 1.37

mC
 


   − −

− −     
= − −     
     

 (77) 

Table 19 shows the correlation characteristics of 
models (74) - (77). 

Table 19. Analysis of the model for 30 .mC  _______________________________________________ 
       R   F   s   mk  _______________________________________________ 
(74)   V21  0.60  2·10-4  2·10-4  - 
    V22  0.63  3·10-3  3·10-3  - 
(75)   V21  0.55  8·10-4  8·10-4  - 
    V22  0.57  8·10-3  8·10-3  - 
(76)   V21  0.55  9·10-4  9·10-4  - 
    V22  0.56  9·10-3  9·10-3  - 
(77)   V21  0.64  10-3  0.02  0.31 
    V22  0.73  5·10-3  0.08  0.31 _______________________________________________ 
 

For the constant 12
mC  for the entire range of 

variation of the block coefficient (0.5;0.9)bС   the 
following representations have excellent correlation 
characteristics: 

21 1 43.33(1 ) ,mC  = − −  (78) 

21 1 4 1 2 34.14(1 ) 9.8 .mC    = − − +  (79) 

For the range of values of the block coefficient 
(0.5;0.7)bС   the following models provide good 

correlation: 

21 1 43.45(1 ) ,mC  = − −  (80) 

21 10.83 ,mC = −  (81) 

2
4 4

21 2
2 2

0.59 0.17 .mC
 

 
= − +  (82) 

For the range of values of the block coefficient 
(0.7;0.9)bС   the following dependences should be 

also highlighted: 

21 10.2 ,mC = −  (83) 

2
4 4

21 2
2 2

0.59 0.17 .mC
 

 
= − +  (84) 

Table 20 shows the correlation characteristics of 
models (78) - (85). 
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Table 20. Analysis of the model for 21.mC   _______________________________________________ 
       R   F   s   mk  _______________________________________________ 
(78)   V21  0.94  10-14  10-15  - 
(79)      0.95  10-15  5·10-3  0.57 
(80)   V22  0.94  10-9  10-9  - 
(81)      0.95  10-9  10-9  - 
(82)      0.96  10-9  0.02  0.77 
(83)      0.97  10-10  10-3  - 
(84)   V23  0.97  10-7  10-7  - 
(85)      0.95  10-5  0.01  - _______________________________________________ 
 

For the constant 12
mC  for the entire range of 

variation of the block coefficient (0.5;0.9)bС   and 
for the range (0.5;0.7)bС   the following model has 
satisfactory correlation characteristics: 

12 1 4 1 4

0.76 0.34
(1 ) .

1 0.51

mC   
   

= − −   
   

 (85) 

For the range of values of the block coefficient 
(0.7;0.9)bС    the following dependence provide a 

satisfactory correlation: 

12 1 1 40.44 2.26 .mC   = − +  (86) 

Table 21 shows the correlation characteristics of 
models (85), (86). 

Table 21. Analysis of the model for 12.mC  _______________________________________________ 
       R   F   s   mk  _______________________________________________ 
(85)   V21  0.5  6·10-3  2·10-2  0.3 
    V22  0.54  2·10-2  0.2  0.72 
(86)   V23  0.66  0.05  0.04  0.74 _______________________________________________ 
 

For the constant 03
mC  for the entire range of 

variation of the block coefficient: (0.5;0.9)bС   the 
following representations have excellent correlation 
characteristics: 

03 1 4 1 2 30.35(1 ) 1.47 ,mC    = − − +  (87) 

2
4 4

03 2
2 2

0.03 0.01 .mC
 

 
= − +  (88) 

For the range of values of the block coefficient 
(0.5;0.7)bС   the following models provide good 

correlation: 

03 1 1 20.1 0.27 ,mC   = − +  (89) 

2
4 4

03 2
2 2

0.05 0.02 ,mC
 

 
= − +  (90) 

03 1 4 1 2 30.33(1 ) 1.69 .mC    = − − +  (91) 

For the range of values of the block coefficient 
(0.7;0.9)bС   the following dependences should be 

also highlighted: 

03 1 4 1 2 30.1(1 ) 0.96 ,mC    = − − −  (92) 

4
03

2

0.01 .mC



= −  (93) 

Table 22 shows the correlation characteristics of 
models (89) - (93). 

Table 22. Analysis of the model for 03.mC  _______________________________________________ 
       R   F   s   mk  _______________________________________________ 
(89)   V21  0.91  10-11  10-4  0.57 
(90)      0.86  10-8  10-3  - 
(91)   V22  0.93  10-7  10-3  0.31 
(92)      0.93  10-7  10-4  - 
(93)      0.93  10-7  10-4  0.77 
(94)   V23  0.92  10-4  0.2  0.38 
(95)      0.92  10-5  10-5  - _______________________________________________ 

6 CONCLUSIONS 

The results shown in Tables 7-21 confirm that almost 
all the new models of hydrodynamic forces and 
moment on the hull which have been obtained, in 
contrast to the existing ones, establish a high degree of 
correlation with an excellent level of significance of 
the connection with regressors. The fact that there are 
several adequate models that meet criteria 1) - 7) for 
each hydrodynamic derivative allows to choose the 
optimal model. If the manoeuvre for vessels with a 
wide range of changes in the values of the block 
coefficient (0,5;0,9)bC   is studied, it is necessary to 
use models are based on the samples V11, V21, V31. 
For narrower ranges of change bC , it is advisable to 
use models that are based on the samples V12, V21, 
V32 or V13, V23, V33. 

The suggested approach allows to obtain new 
adequate mathematical models of other non-inertial 
forces on the hull, which will allow to build more 
accurate mathematical models of the dynamics of the 
ship’s propulsion complex. 
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