Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study aims to develop models for estimating topsoil properties by analyzing both the parametric and textural features extracted from Sentinel-1 C-SAR (VV, VH) images. Field measurements were collected from 13 soil samples in the Laylan region of Kirkuk City, Iraq, and utilized to develop and validate the models. The study employed classification algorithms, including the random forest (RF) and maximum likelihood (ML) classifiers, using specific indicators derived from Sentinel-1 data. Additionally, a soil triangle was constructed using three axes to represent the predicted target parameters, facilitating the identification of five distinct soil groups in the study area. The findings reveal that the soil triangle enables the delineation of five subcategories of soil characterized by varying proportions of sand and silt. Each soil sample was categorized into one of five predefined classes based on its clay content, ranging from 0% to 14.48%. The performances of the ML and RF algorithms were assessed, demonstrating their effectiveness in estimating percentage labels despite limited training data, with ML exhibiting higher accuracy than RF. The developed models showed promising potential; however, their applicability should be tested across diverse geographic regions with varying climatic conditions. Future research could focus on utilizing these models to generate soil texture maps, potentially enhancing soil parameter estimation in different environments.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
26--36
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Technical Engineering College, Northern Technical University, Kirkuk, Iraq
- Technical Engineering College, Northern Technical University, Kirkuk, Iraq
autor
- Technical Engineering College, Northern Technical University, Kirkuk, Iraq
Bibliografia
- 1. Alexandridis, T.K., Cherif, I., Bilas, G., Almeida, W.G., Hartanto, I.M., Andel, S.J.V., Araujo, A. 2016. Spatial and temporal distribution of soil moisture at the catchment scale using remotely-sensed energy fluxes. Water 8(1), 32.
- 2. Amin B.P. 2022. Delineate the hydrological boundaries situation using the morphometric analysis and geological features: A case study of laylan sub-basin, Kirkuk / NE Iraq. IOP Conference Series: Earth and Environmental Science 1120(1).
- 3. Bousbih, Sribi, M., Pelletier, C., Gorrab, A., Lili- -Chabaane, Z., Baghdadi, N., Aissa, N.B., Mougenot, B. 2019. Soil texture estimation using radar and optical data from Sentinel-1 and Sentinel-2. Remote Sensing 11(13).
- 4. Breiman, L. 2001. Random Forests. Machine learning 45, 5–32.
- 5. Chang, D.-H., Kothari, R. and Islam S. 2003. Classification of soil texture using remotely sensed brightness temperature over the southern great plains. IEEE transactions on Geoscience and Remote Sensing 41(3), 664–74.
- 6. Robertson, L.D., Davidson, A.M., McNairn, H., Hosseini, M., Mitchell, S., de Abelleyra, D., Verón, S., le Maire, G., Plannells, M., Valero, S., Ahmadian, N., Coffin, A., Bosch, D., Cosh, M.H., Basso, B., Saliendra, N. 2020. C-Band synthetic aperture radar (SAR) imagery for the classification of diverse cropping systems. International Journal of Remote Sensing 41(24), 9628–49. https://doi.org/10.1080/01431161.2020.1805136
- 7. Robertson, L.D., Davidson, A., McNairn, H., Hosseini, M., Mitchell, S.W., de Abelleyra, D. Veron, S., Cosh, M.H. 2020. Synthetic aperture radar (SAR) image processing for operational space-based agriculture mapping. International Journal of Remote Sensing 41(18), 7112–44.
- 8. Ge, Y., Thomasson, J.A. and Sui, R. 2011. Remote sensing of soil properties in precision agriculture: A review. Frontiers of Earth Science 5, 229–38.
- 9. Grimm, R., Behrens, T., Märker, M., and Elsenbeer H. 2008. Soil organic carbon concentrations and stocks on barro Colorado Island—Digital soil mapping using random forests analysis. Geoderma 146(1–2), 102–13.
- 10. Holah, N., Baghdadi, N., Zribi, M., Bruand, A., King, C. 2005. Potential of ASAR/ENVISAT for the characterization of soil surface parameters over bare agricultural fields. Remote sensing of environment 96(1), 78–86.
- 11. Huang, H.H. and He Q. 2022. Nonlinear regression analysis. International Encyclopedia of Education: Fourth Edition 3, 558–67.
- 12. Kornelsen, K.C, and Coulibaly, P. 2013. Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. Journal of Hydrology 476, 460–89.
- 13. Korres, W., Reichenau, T.G., Fiener, P., Koyama, C.N., Bogena, H.R., Cornelissen, T., Baatz, R., Herbst, M., Diekkrüger, B., Vereecken, H. Schneider, K. 2015. Spatio-temporal soil moisture patterns–A meta-analysis using plot to catchment scale data. Journal of hydrology 520, 326–41.
- 14. Liao, K., Xu, S., Wu, J., and Zhu, Q. 2013. Spatial estimation of surface soil texture using remote sensing data. Soil science and plant nutrition 59(4), 488–500.
- 15. Lillesand, T., Kiefer, R.W. and Chipman, J. 2015. Remote Sensing and Image Interpretation. John Wiley & Sons.
- 16. Loew, A., and Mauser, W. 2007. Generation of geometrically and radiometrically terrain corrected SAR image products. Remote Sensing of Environment 106(3), 337–49.
- 17. Mustapha, M., Lim, H.S., Jafri, M.Z.M. 2010. Comparison of neural network and maximum likelihood approaches in image classification.
- 18. Mahmoud, A.S., Mezaal, M.R., Hameed, M.R., and Naje A.S. 2022. A Framework for improving urban land cover using object and pixel-based techniques via remotely sensed data. Nature Environment & Pollution Technology 21.
- 19. Ridha, M.M., Mahmoud, A.S., Jasim, M.A., and Naje, A.S. 2022. Dynamics of land use and land cover change using geospatial techniques–A case study of Baghdad, Iraq. Ecological Engineering & Environmental Technology 23.
- 20. Periasamy, S. 2018. Significance of dual polarimetric synthetic aperture radar in biomass retrieval: An attempt on Sentinel-1. Remote Sensing of Environment 217, 537–49.
- 21. Periasamy, S., Senthil, D. and Shanmugam, R.S. 2021. A soil texture categorization mapping from empirical and semi-empirical modelling of target parameters of synthetic aperture radar. Geocarto International 36(5), 581–98. https://doi.org/10.1080/10106049.2019.1618924
- 22. Salahalden, V.F., Shareef, M.A. and Al Nuaimy, Q.A. 2024. Red clay soil physical and chemical properties distribution using remote sensing and GIS techniques in Kirkuk City, Iraq. Iraqi Geological Journal 57(1), 194–220.
- 23. Shareef, M.A., Toumi, A. and Khenchaf, A. 2014. Prediction of water quality parameters from SAR images by using multivariate and texture analysis models. SAR Image Analysis, Modeling, and Techniques XIV 9243 (October 2014), 924319.
- 24. Souissi, B., and Ouarzeddine, M. 2016. Polarimetric SAR data correction and terrain topography measurement based on the radar target orientation angle. Journal of the Indian Society of Remote Sensing 44, 335–49.
- 25. Srivastava, H.S., Patel, P., Sharma, Y., and Navalgund, R.R. 2009. Large-area soil moisture estimation using multi-incidence-angle RADARSAT-1 SAR data. IEEE Transactions on Geoscience and Remote Sensing 47(8), 2528–35.
- 26. Tripathi, A., and Tiwari, R.K. 2022. Utilisation of spaceborne c-band dual pol Sentinel-1 SAR data for simplified regression-based soil organic carbon estimation in Rupnagar, Punjab, India. Advances in Space Research 69(4), 1786–98. https://doi.org/10.1016/j.asr.2021.08.007
- 27. Yu, H., Kong, B., Wang, G., Du, R., Qie, G. 2018. Prediction of soil properties using a hyperspectral remote sensing method. Archives of Agronomy and Soil Science 64(4), 546–59.
- 28. Zou, K.H., Tuncali, K., and Silverman, S.G. 2003. Correlation and simple linear regression. Radiology 227(3), 617–28.
- 29. van Zyl, J.J, Chapman, B.D., Dubois, P., and Shi, J. 1993. The effect of topography on SAR calibration. IEEE Transactions on Geoscience and Remote Sensing 31(5), 1036–43.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-668f4096-7e19-4821-ba10-15e08fb47a2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.