PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on phosphorus release from medium- and low-grade phosphate ore powders by mechanical activation and low molecular weight organic acid activation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phosphate ore is an essential resource for producing phosphate fertilizer. International phosphate ore is overmined, and phosphorus resources are becoming depleted; improving the utilization efficiency of medium- and low-grade phosphate ore powder (PR) through activation is the key to the sustainable and efficient use of phosphorus resources. However, the traditional activation method is inefficient and has some limitations on the grade of phosphate ore. In this study, a combination of mechanical activation and low molecular weight organic acid activation was used to activate medium- and low-grade phosphate ore powders, and the activation effects of different mechanical activation conditions, such as mechanical grinding time, the addition of different types and proportions of active minerals (zeolite, bentonite, and kaolin), and different types of low molecular weight organic acids (oxalic acid, tartaric acid, malic acid, and citric acid), on phosphate ore powder were compared. The results show that mechanical activation had a synergistic effect with low molecular weight organic acid activation. Mechanical activation can reduce the particle size of phosphate ore powder and increase the release of effective phosphorus from phosphate ore powder. Mechanical activation for 60 min reduced phosphate ore powder's median diameter (D50) from 41.67 μm to 10.59 μm and increased the effective phosphorus leaching rate from 1.19% to 8.27%. The phosphorus release effect of low molecular weight organic acids was oxalic acid > tartaric acid > malic acid > citric acid, with the optimal concentrations of 0.1 mol/L, 0.3 mol/L, 0.5 mol/L, 0.2 mol/L, and the optimal activation cultivation times were all 6 days. This study optimizes the activation method of phosphorite powder, which can not only alleviate the current global shortage of phosphorite resources but also reduce environmental pollution while maximizing the use of phosphorite resources.
Rocznik
Strony
art. no. 183275
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
autor
  • School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
  • Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area with High Groundwater Level, Huainan, China
autor
  • School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
  • Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area with High Groundwater Level, Huainan, China
autor
  • School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
  • Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area with High Groundwater Level, Huainan, China
autor
  • School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
  • Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area with High Groundwater Level, Huainan, China
  • School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
  • Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area with High Groundwater Level, Huainan, China
autor
  • School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
  • Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area with High Groundwater Level, Huainan, China
Bibliografia
  • AARAB, I., DERQAOUI, M., AMARI, K.E., YAACOUBI, A., ABIDI, A., ETAHIRI, A., BAÇAOUI, A., 2022. Flotation tendency assessment through DOE: case of low-grade Moroccan phosphate ore. Min. Metall. Explor. 39, 1721-1741.
  • ANDRIĆ L., TERZIĆ A., PETROV M., STOJANOVIĆ, J., KOSTOVIĆ, M., 2015. Energy conversion in phosphate ore grain mixture activated via ultra-centrifugal mill. Int. J. Miner. Process. 143, 1-11.
  • ANNAN, E., NYANKSON, E., AGYEI-TUFFOUR, B., ARMAH, S. K., NKRUMAH-BUANDOH, G., HODASI, J. A. M., OTENG-PEPRAH, M., 2021. Synthesis and characterization of modified kaolin-bentonite composites for enhanced fluoride removal from drinking water. Adv. Mater. Sci. Eng. 2021, 1-12.
  • AMARASINGHE, T., MADHUSHA, C., MUNAWEERA, I., KOTTEGODA, N., 2022. Review on mechanisms of phosphate solubilization in rock phosphate fertilizer. Commun. Soil Sci. Plant Anal. 53, 944-960.
  • ARROUG, L., ELAATMANI, M., ZEGZOUTI, A., AITBABRAM, M., 2021. Low-grade phosphate tailings beneficiation via organic acid leaching: process optimization and kinetic studies. Minerals. 11, 492.
  • BACELO, H., PINTOR, A.M.A., SANTOS, S.C.R., BOAVENTURA, R.A.R., BOTELHO, C.M.S., 2020. Performance and prospects of different adsorbents for phosphorus uptake and recovery from water. Chem. Eng. J. 381, 122566.
  • BACHOUÂ, H., OTHMANI, M., COPPEL, Y., FATTEH, N., DEBBABI, M., BADRAOUI, B., 2014. Structural and thermal investigations of a tunisian natural phosphate rock. J. Mater. Environ. Sci. 5, 1152–1159.
  • BASAK, B.B., 2019. Phosphorus release by low molecular weight organic acids from low-grade Indian rock phosphate. Waste Biomass Valorization. 10, 3225-3233.
  • BOLAN, N. S., NAIDU, R., MAHIMAIRAJA, S., BASKARAN, S., 1994. Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biol. Fertil. Soils. 18, 311-319.
  • BOLDYREV, V.V., PAVLOV, S.V., GOLDBERG, E.L., 1996. Interrelation between fine grinding and mechanical activation. Int. J. Miner. Process. 44-45, 181-185.
  • BRAITHWAITE, A.C., EATON, A.C., GROOM, P.S., 1990. Factors affecting the solubility of phosphate rock residues in 2% citric acid and 2% formic acid. Fert. Res. 23, 37-42.
  • BRIGATTI, M.F., GALÁN, E., THENG, B.K.G., 2013. Chapter 2 - structure and mineralogy of clay minerals. Dev. Clay Sci. 5, 21-81.
  • CHAIKINA, M. V., AMAN, S., 2005. Fracture, grinding, mechanical activation and synthesis processes in solids under mechanical action. Sci. Sintering. 37, 93-105.
  • CHIEN, S.H.N., PROCHNOW, L.I., MIKKELSEN, R., 2010. Agronomic use of phosphate rock for direct application. Better Crops Plant Food. 94, 21-23.
  • COOPER, J., LOMBARDI, R., BOARDMAN, D., CARLIELL-MARQUE, C., 2011. The future distribution and production of global phosphate rock reserves. Resour. Conserv. Recycl. 57, 78-86.
  • DE OLIVEIRA MENDES, G., MURTA, H.M., VALADARES, R.V., DA SILVEIRA, W.B., DA SILVA, I.R., COSTA, M.D., 2020. Oxalic acid is more efficient than sulfuric acid for rock phosphate solubilization. Miner. Eng., 155, 106458.
  • FANG, N.N., CHEN, Z.H., LIU Z.Q., DAI, H.M., YANG X.M., WANG, W., 2022. Effects of mechanochemically activated phosphate rock on maize growth and phosphorus use. Plant, Soil Environ. 68, 155-161.
  • FANG, N.N., SHI, Y.L., CHEN, Z.H., SUN, X., ZHANG, L., YI, Y.L., 2019. Effect of mechanochemical activation of natural phosphorite structure as well as phosphorus solubility. PLoS One. 14, e0224423.
  • FENG, M., KOU, Z., TANG, C., SHI, Z., TONG, Y., ZHANG, K., 2023. Recent progress in synthesis of zeolite from natural clay. Appl. Clay Sci. 243, 107087.
  • GU, K., CHEN, B., YAN, P., WANG, J., 2022. Recycling of Phosphate Tailings and Acid Wastewater from Phosphorus Chemical Industrial Chain to Prepare a High Value-Added Magnesium Oxysulfate Cement. J. Clean. Prod. 369, 133343.
  • GUO, H.C., WU, X.P., WANG, W.B., LUO, X.H., 2011. Preliminary study on direct application specification of phosphate rocks in agriculture. Chin. J. Trop. Agric (China). 31, 45-49.
  • GUO, Z.X., XIONG, J.B., SOHAIL, M.I., YANG, D.J., 2021. Investigating phosphorus release from lignite-based activated rock phosphate through TG-FTIR analysis. Environ. Technol. Innov. 23, 101787.
  • HUANG, G.Y., GAO, R.L., YOU, J.W., ZHU, J., FU, Q.L., HU, H.Q., 2019. Oxalic acid activated phosphate rock and bone meal to immobilize Cu and Pb in mine soils. Ecotoxicol. Environ. Saf. 174, 401-407.
  • HUANG, L., MAO, X., WANG, J., CHEN, X., WANG, G.H., LIAO, Z.W., 2014. The effect and mechanism of improved efficiency of physicochemical pro-release treatment for low grade phosphate rock. J. Soil Sci. Plant Nutr. 14, 316-331.
  • IBRAHIM, S. S., EL-MIDANY, A. A., BOULOS, T. R., 2010. Economic preferences of mechanical activation over mineral beneficiation for phosphate rock direct applications. Physicochem. Probl. Miner. Process. 44, 63-78.
  • JALALI, M., JALALI, M., 2022. Effect of low-molecular-weight organic acids on the release of phosphorus from amended calcareous soils: experimental and modeling. J. Soil Sci. Plant Nutr. 22, 4179-4193.
  • JIN, L.L., SUN, L.S, WANG, L.L, SHI, Y.L., 2013. Studies on the mechanical activation of huangmailing phosphorite. Res. J. Chem. Environ. 17, 156–162.
  • KOLEVA, V., PETKOVA, V., 2012. IR spectroscopic study of high energy activated Tunisian phosphorite. Vib. Spectrosc. 58, 125-132.
  • KPOMBLEKOU-A, K., TABATABAI, M.A., 2003. Effect of low-molecular weight organic acids on phosphorus release and phytoavailabilty of phosphorus in phosphate rocks added to soils. Agric. Ecosyst. Environ. 100, 275-284.
  • KUBEKOVA, S.N., KAPRALOVA, V.I., IBRAIMOVA, G.T., RAIMBEKOVA, A.S., YDYRYSHEVA, S.K., 2022. Mechanically activated silicon-phosphorus fertilisers based on the natural and anthropogenic raw materials of Kazakhstan. J. Phys. Chem. Solids. 162, 110518.
  • LAONAPAKUL, T., SUTTHI, R., CHAIKOOL, P., TALANGKUN, S., BOONMA, A., CHINDAPRASIRT, P., 2021. Calcium phosphate powders synthesized from CaCO3 and CaO of natural origin using mechanical activation in different media combined with solid-state interaction. Mater. Sci. Eng. C. 118, 111333.
  • LIN, S.M., YU, Y.L., ZHONG, M.F., YANG, H., ZHANG, C.Y., ZHANG, Z.J., WU, Y.Y., 2023. The Dissolution Behavior of Feldspar Minerals in Various Low-Molecular-Weight Organic Acids. Materials. 16, 6704.
  • MABAGALA, F.S. 2022. On the tropical soils, The influence of organic matter (OM) on phosphate bioavailability. Saudi J. Biol. Sci. 29, 3635-3641.
  • MAHAWAR, N., TAGORE, G.S., VISHWAKARMA, M., BANGRE, J., NAYAK, J.K., AGARWAL, S., YADAV, S., 2022. Study of release pattern of phosphorus in soils: incubated with organic acids and different origin of rock phosphate. Int. J. Plant Soil Sci. 34, 1-10.
  • MARDAMOOTOO, T., DU PREEZ, C.C., BARNARD, J.H., 2021. Phosphorus management issues for crop production: A review. Afr. J. Agric. Res. 17, 939-952.
  • NA, W., 2020. Research progress in activation of phosphorus containing substances and remediation of heavy metal pollution in soil. E3S Web Conf. 165, 02033.
  • PETKOVA, V., KOLEVA, V., KOSTOVA, B., SAROV, S., 2015. Structural and thermal transformations on high energy milling of natural apatite. J. Therm. Anal. Calorim. 121, 217–225.
  • PICKERING, H.W., MENZIES, N.W., HUNTER, M.N., 2002. Zeolite/rock phosphate—a novel slow release phosphorus fertiliser for potted plant production. Sci. Hortic. 94, 333-334.
  • PLOTEGHER, F., RIBEIRO, C., 2016. Characterization of single superphosphate powders – a study of milling effects on solubilization kinetics. Mater. Res. 19, 98-105.
  • QIAN, G.P., WANG, K., BAI, X.P., XIAO, T., JIN, D.Z, HUANG, Q.J., 2018. Effects of surface modified phosphate slag powder on performance of asphalt and asphalt mixture. Constr. Build. Mater. 158, 1081-1089.
  • RAIYMBEKOV, Y., BESTEREKOV, U., ABDURAZOVA, P., NAZARBEK, U., 2022. Review of methods and technologies for the enrichment of low-grade phosphorites. Rev. Inorg. Chem. 42, 385-395.
  • RYBALKINA, O.A., SHARAFAN, M.V., NIKONENKO, V.V., PISMENSKAYA, N.D., 2022. Two mechanisms of H+/OH− ion generation in anion-exchange membrane systems with polybasic acid salt solutions. J. Membr. Sci. 651, 120449.
  • SHAN, Z.W., LI, G.F., LI, F.J., LIU, L.W., 2020. Study on mechanism of activated phosphate rock powder in Hebei by ultrafine grinding. Chin. Min. Mag (China). 29, 109-115.
  • SHAO, X.Q., YAO, H.L., CUI, S.H., PENG, Y.T, GAO, X., YUAN, C.P., CHEN, X., HU, Y.M., MAO, X.Y., 2021. Activated low-grade phosphate rocks for simultaneously reducing the phosphorus loss and cadmium uptake by rice in paddy soil. Sci. Total Environ. 780, 146550.
  • SOMAVILLA, A., CANER, L., BORTOLUZZI, E.C., SANTANNA, M.A., DOS SANTOS, D.R., 2021. P-legacy effect of soluble fertilizer added with limestone and phosphate rock on grassland soil in subtropical climate region. Soil Tillage Res. 211, 105021.
  • TELES, A.P.B., RODRIGUES, M., PAVINATO, P.S., 2020. Solubility and efficiency of rock phosphate fertilizers partially acidulated with zeolite and pillared clay as additives. Agronomy. 10, 918.
  • TÕNSUAADU, K., KALJUVEE, T., PETKOVA, V., TRAKSMAA, R., BENDER, V., KIRSIMÄE, K., 2011. Impact of mechanical activation on physical and chemical properties of phosphorite concentrates. Int. J. Miner. Process. 100, 104–109.
  • VÁCLAVKOVÁ, S., ŠYC, M., MOŠKO, J., POHOŘELY, M., SVOBODA, K., 2018. Fertilizer and soil solubility of secondary p sources—the estimation of their applicability to agricultural soils. Environ. Sci. Technol. 52, 9810-9817.
  • WANG, C., GAO, H., LIU, S.H., YE, F., 2012. Mechano-chemical activity and the characterization of activity for low-grade phosphate powder. Ind. Miner. Process (China). 41, 1-4.
  • WANG, C., MO, X.R., WANG, C., GAO, H., 2018. Study on Structures and Leaching Property of Phosphate Ore after Mechanical Activation. Химия в интересах устойчивого развития. 26, 471-475.
  • WANG, G.H., ZHOU, D.R., YANG, Q., ZHOU, K.Q., ZHAO, Y., 2004. Effects of low-molecular-weight organic acids on release of phosphorus from rock phosphate. J. Agro-Environ. Sci (China). 23, 80-84.
  • WANG, T.T., SUN X., LI X.M., HE, H.Y., SHI Y.L., 2012. Effectiveness of composite activated phosphate rock powder. Chin. Agric. Sci. Bull (China). 28, 57-62.
  • WEI, W., CUI, J., WEI, Z., 2014. Effects of low molecular weight organic acids on the immobilization of aqueous Pb (II) using phosphate rock and different crystallized hydroxyapatite. Chemosphere. 105, 14-23.
  • XIE, F., ZHANG, J., CHEN, J., WANG, J., WU, L., 2019. Research on enrichment of P2O5 from low-grade carbonaceous phosphate ore via organic acid solution. J. Anal. Methods Chem. 2019.
  • YANEVA, V., PETKOVA, V., DOMBALOV, I., 2005. Structural transformation after mechanical activation of natural phosphorite originating from Syria. Chem. Sustain. Dev. 13, 351-358.
  • YANEVA, V., PETROV, O., PETKOVA, V., 2009. Structural and spectroscopic studies of mechanochemically activated nanosized apatite from Syria. Mater. Res. Bull. 44, 693-699.
  • YANG, F., ZHANG, S., SONG, J., DU, Q., LI, G., Tarakina, N.V., Antonietti, M., 2019. Synthetic humic acids solubilize otherwise insoluble phosphates to improve soil fertility. Angew. Chem. 131, 18989-18992.
  • ZHANG, X.M., LI, Y., HU, C., HE, Z.Q., WEN, M.X., GAI, G.S., HUANG, Z.H., YANG, Y.F., HAO, X.Y., LI, X.Y., 2019. Enhanced phosphorus release from phosphate rock activated with lignite by mechanical microcrystallization: effects of several typical grinding parameters. Sustainability. 11, 1068.
  • ZHANG, Z., GUO, G.L., WANG, M., ZHANG, J., WANG, Z.X, LI, F.S., CHEN, H.H., 2018. Enhanced stabilization of Pb, Zn, and Cd in contaminated soils using oxalic acid-activated phosphate rocks. Environ. Sci. Pollut. Res. 25, 2861–2868.
  • ZHAO, F.T., GAI, G.S., JING, D.W., YANG Y.F., DONG, Y.J., LIU, C.S., 2009. Ultrafine grinding activations of phosphate rock and their dynamic phosphorus releases. Plant Nutr. Fert. Sci (China). 15, 474-477.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-668a687d-ad08-40c2-85b1-467ac597de8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.