PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cantilever-based biaxial FBG inclinometer with low cross-axis sensitivity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work proposes and demonstrates a biaxial sensing inclinometer based on two FBGs surfacemounted on two separate thin cantilevers with a diminishable cross-axis sensitivity. The measured sensitivities for the inclination angles in the x-z plane and y-z plane are 34.87 and 33.49 pm/deg, respectively. To enhance the protection of the delicate FBGs and minimize axis-to-axis cross-sensitivity, the carbon-steel cantilevers are strategically arranged in a perpendicular configuration, resulting in an impressively low cross-sensitivity value of just 0.9275%. This alignment not only offers mechanical shielding but also ensures optimal performance and accuracy for the FBGs.
Czasopismo
Rocznik
Strony
189--203
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Photonics Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • Photonics Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
autor
  • Photonics Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
autor
  • Photonics Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
Bibliografia
  • [1] ISMAIL N., SHARBIRIN A.S., SA’AD M., ZAINI M.K.A., ISMAIL M.F., BRAMBILLA G., RAHMAN B.M.A., GRATTAN K.T.V., AHMAD H., Novel 3D-printed biaxial tilt sensor based on fibre Bragg grating sensing approach, Sensors and Actuators A: Physical 330, 2021: 112864. https://doi.org/10.1016/ j.sna.2021.112864
  • [2] XU Y., JIANG Q., YANG K., ZHOU J., GUO Q., A novel ultra-high-resolution inclination sensor based on diamagnetic levitation, Sensors and Actuators A: Physical 343, 2022: 113686. https://doi.org/ 10.1016/j.sna.2022.113686
  • [3] BAHRI R., BOUCETTA R., BEL HADJ ALI NAOUI S., An innovative tilt sensor based on terrestrial gravity and ultrasonic wave’s diffraction for mobile robots, [In] 2018 15th International Multi-Conference on Systems, Signals & Devices (SSD), Yasmine Hammamet, Tunisia, 2018, pp. 821-826. https://doi.org/10.1109/SSD.2018.8570475
  • [4] TANG L.J., ZHANG K., CHEN S., ZHANG G.J., LIU G.W., MEMS inclinometer based on a novel piezoresistor structure, Microelectronics Journal 40(1), 2009: 78-82. https://doi.org/10.1016/ J.MEJO.2008.06.080
  • [5] SEGALINI A., CHIAPPONI L., PASTARINI B., CARINI C., Automated Inclinometer Monitoring Based on Micro Electro-Mechanical System Technology: Applications and Verification, [In] Landslide Science for a Safer Geoenvironment, [Eds.] Sassa K., Canuti P., Yin Y., Springer, Cham, 2014. https://doi.org/10.1007/978-3-319-05050-8_92
  • [6] HAN Q., CHEN C., Research on tilt sensor technology, [In] 2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop, Wuhan, China, 2008: 786-789. https://doi.org/ 10.1109/KAMW.2008.4810608
  • [7] YULIZA E., HABIL H., SALAM R.A., MUNIR M.M., ABDULLAH M., KHAIRURRIJAL, Development of a simple single-axis motion table system for testing tilt sensors, Procedia Engineering 170, 2017: 378-383. https://doi.org/10.1016/J.PROENG.2017.03.061
  • [8] SU W., FU J., The study of variable sensitivity in dual-axis tilt sensor, Procedia Engineering 29, 2012: 2605-2609. https://doi.org/10.1016/J.PROENG.2012.01.359
  • [9] HA TRAN THI THUY, TIEP DANG DINH, TUAN VU QUOC, THINH PHAM QUOC, MASAHIRO AOYAGI, MY BUI NGOC, VAN THANH DAU, TUNG THANH BUI, A robust two-axis tilt angle sensor based on air/liquid two-phase dielectric capacitive sensing structure, IETE Journal of Research 66(5), 2020: 685-696. https://doi.org/10.1080/03772063.2018.1518732
  • [10] ZHENG D., CAI Z., FLORIS I., MADRIGAL J., PAN W., ZOU X., SALES S., Temperature-insensitive optical tilt sensor based on a single eccentric-core fiber Bragg grating, Optics Letters 44(22), 2019: 5570-5573. https://doi.org/10.1364/OL.44.005570
  • [11] ŁUCZAK S., EKWIŃSKA M., Electric-contact tilt sensors: A review, Sensors 21(4), 2021: 1097. https://doi.org/10.3390/S21041097
  • [12] LIM K.-S., ONG Z.-C., LEE Y.-S., BIN ZAINI M.K.A., AHMAD H., Pseudohigh-resolution spectral interrogation scheme for small signals from FBG sensors, IEEE Transactions on Instrumentation and Measurement 68(8), 2019: 2964-2970. https://doi.org/10.1109/TIM.2018.2871279
  • [13] SHARBIRIN A.S., ZAINI M.K.A., BRAMBILLA G., RAHMAN B.M.A., GRATTAN K.T.V., ISMAIL M.F., AHMAD H., 3D-printed tilt sensor based on an embedded two-mode fiber interferometer, IEEE Sensors Journal 21(6), 2021: 7565-7571. https://doi.org/10.1109/JSEN.2021.3050756
  • [14] LIAO H., LU P., FU X., JIANG X., NI W., LIU D., ZHANG J., Sensitivity amplification of fiber-optic in-line Mach–Zehnder Interferometer sensors with modified Vernier-effect, Optics Express 25(22), 2017: 26898-26909. https://doi.org/10.1364/OE.25.026898
  • [15] MIHAILOV S.J., Fiber Bragg grating sensors for harsh environments, Sensors 12(2), 2012: 1898-1918. https://doi.org/10.3390/S120201898
  • [16] PAN J., WANG L., HOU W., Design and investigation of a high-sensitivity tilt sensor based on FBG, Photonic Sensors 13, 2023: 230228. https://doi.org/10.1007/S13320-022-0671-8
  • [17] VINNARASI K., SUNDARAVADIVELU S., Strain measurement using fiber Bragg grating sensor for crack detection, International Journal of Advanced Engineering Research and Science 4(3), 2017: 219-223. https://doi.org/10.22161/IJAERS.4.3.35
  • [18] PACHAVA V.R., KAMINENI S., MADHUVARASU S.S., PUTHA K., MAMIDI V.R., FBG-based high-sensitive pressure sensor and its low-cost interrogation system with enhanced resolution, Photonic Sensors 5, 2015: 321-329. https://doi.org/10.1007/S13320-015-0259-7
  • [19] HILLER T., BLOCHER L., VUJADINOVIC M., PENTEK Z., BUHMANN A., ROTH, H., Analysis and compensation of cross-axis sensitivity in low-cost MEMS inertial sensors, [In] 2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Kailua-Kona, HI, USA, 2021: 1-4. https://doi.org/ 10.1109/INERTIAL51137.2021.9430454
  • [20] NGUYEN M.N., NGUYEN L.Q., CHU H.M., VU H.N., A two degrees of freedom comb capacitive-type accelerometer with low cross-axis sensitivity, Journal of Mechanical Engineering and Sciences 13(3), 2019: 5334-5346. https://doi.org/10.15282/jmes.13.3.2019.09.0435
  • [21] DIN H., IQBAL F., LEE B., Design approach for reducing cross-axis sensitivity in a single-drive multi-axis MEMS gyroscope, Micromachines 12(8), 2021: 902. https://doi.org/10.3390/mi12080902
  • [22] JATININGRUM D., DE VISSER C., VAN PAASSEN M.M., CHU Q.P., MULDER M., Investigating cross-axis sensitivity and misalignment in an angular accelerometer measurement unit, AIAA Guidance, Navigation, and Control Conference, Grapevine, Texas, 2017. https://doi.org/10.2514/6.2017-1905
  • [23] HSU Y.-W., CHEN J.-Y., CHIEN H.-T., CHEN S., LIN S.-T., LIAO L.-P., New capacitive low-g triaxial accelerometer with low cross-axis sensitivity, Journal of Micromechanics and Microengineering 20, 2010: 055019. https://doi.org/10.1088/0960-1317/20/5/055019
  • [24] MOHAMMED Z., GILL W.A., RASRAS M., Double-comb-finger design to eliminate cross-axis sensitivity in a dual-axis accelerometer, IEEE Sensors Letters 1(5), 2017: 2501004. https://doi.org/10.1109/ LSENS.2017.2756108
  • [25] HONG C.Y., ZHANG Y.F., LU Z., YIN Z.Y., A FBG tilt sensor fabricated using 3D printing technique for monitoring ground movement, IEEE Sensors Journal 19(15), 2019: 6392-6399. https://doi.org/ 10.1109/JSEN.2019.2908873
  • [26] HE S.L., DONG X.Y., NI K., JIN Y.X., CHAN C.C., SHUM P., Temperature-insensitive 2-D tilt sensor with three fiber Bragg gratings, Measurement Science and Technology 21, 2010: 025203. https://doi.org/ 10.1088/0957-0233/21/2/025203
  • [27] BAO H.L., DONG X.Y., ZHAO C.L., SHAO L.-Y., CHAN C.C., SHUM P., Temperature-insensitive FBG tilt sensor with a large measurement range, Optics Communications 283(6), 2010: 968-970. https://doi.org/10.1016/J.OPTCOM.2009.11.014
  • [28] AU H.Y., KHIJWANIA S.K., FU H.Y., CHUNG W.H., TAM H.Y., Temperature-insensitive fiber Bragg grating based tilt sensor with large dynamic range, Journal of Lightwave Technology 29(11), 2011: 1714-1720. https://doi.org/10.1109/JLT.2011.2132695
  • [29] GUO Y.X., LI C., ZHOU X.L., JIANG L., LIU H.H., Wide-range fiber Bragg grating tilt sensor based on a cam structure, IEEE Sensors Journal 20(9), 2020: 4740-4748. https://doi.org/10.1109/ JSEN.2020.2967088
  • [30] LI K., ZHAO Y.H., LI Y.Q., LIU G.Y., LI J., Fiber Bragg grating biaxial tilt sensor using one optical fiber, Optik 218, 2020: 164973. https://doi.org/10.1016/J.IJLEO.2020.164973
  • [31] CHAO C.-R., LIANG W.-L., LIANG T.-C., Design and testing of a 2D optical fiber sensor for building tilt monitoring based on fiber Bragg gratings, Applied System Innovation 1(1), 2018: 2. https://doi.org/ 10.3390/ASI1010002
  • [32] BEER F., JOHNSTON E.R. JR., DEWOLF J., MA J., Mechanics of Materials, 7th Ed., Chapter 9, McGraw-Hill Education, 2014.
  • [33] GENGNAGEL C., LAFUENTE HERNÁNDEZ E., BÄUMER R., Natural-fibre-reinforced plastics in actively bent structures, Proceedings of the Institution of Civil Engineers-Construction Materials 166(6), 2013: 365-377. https://doi.org/10.1680/COMA.12.00026
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6689ea8d-fdaf-4a3b-8fb7-f9aad4ac3966
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.