PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of Humic Acid Extracted from Organic Waste Composts on Turnip Culture (Brassica rapa subsp. rapa) in a Sandy Soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Adding humic acid to soil can improve soil structure and fertility, which can lead to better plant growth and higher crop yields. Extracting humic acid from compost is a sustainable and environmentally friendly way to obtain a valuable organic material. Humic acid (HA) can be extracted from compost relatively easily and at a low cost, making it an attractive option for farmers. In this study, we investigated the use of sugarcane bagasse (SB) and immature horse manure (IHM) as bulking agents for the composting of separated municipal solid waste (SMSW) and the extraction and characterization of humic acid from the mature composts produced. Fertilizing solutions containing different concentrations of humic acid were prepared and used to evaluate their effects on turnip crop growth and various biochemical parameters during cultivation. The results showed that the humic acid extracted from the composts had high yields and were rich in elemental carbon. The application of humic acid at both low and high concentrations resulted in a significant improvement in all the parameters measured except for the total protein in the roots, which did not differ significantly between the humic acid concentrations. The yield, root diameter and fresh weight increased significantly, and the leaf area was proportional to the humic acid concentration of the solution used. The highest increase in chlorophyll a content was observed in the treatment of humic acid extracted from composts C2 and C3 at a concentration of 0.1 gL-1, with an increase of 31% and 37%, respectively, compared to the control. The use of humic acid provided by co-compost can be considered a successful management strategy for degraded sandy soils and sustainable agriculture production in sandy poor soils worldwide.
Rocznik
Strony
345--359
Opis fizyczny
Bibliogr. 72 poz., rys., tab.
Twórcy
autor
  • Laboratory of Sustainable Agriculture Management, Department of Agricultural and Environmental Engineering, Higher School of Technology, Chouaib Doukkali University, 24 350 Sidi Bennour, Morocco
  • Laboratory of Water and Environnement, Department of Chemistry, Faculty of Sciences El Jadida, Chouaib Doukkali University, 24 000 El Jadida, Morocco
  • Laboratory of Water and Environnement, Department of Chemistry, Faculty of Sciences El Jadida, Chouaib Doukkali University, 24 000 El Jadida, Morocco
  • Laboratory of Water and Environnement, Department of Chemistry, Faculty of Sciences El Jadida, Chouaib Doukkali University, 24 000 El Jadida, Morocco
  • Laboratory of Water and Environnement, Department of Chemistry, Faculty of Sciences El Jadida, Chouaib Doukkali University, 24 000 El Jadida, Morocco
  • Laboratory of Water and Environnement, Department of Chemistry, Faculty of Sciences El Jadida, Chouaib Doukkali University, 24 000 El Jadida, Morocco
Bibliografia
  • 1. Adani F., Genevini P., Zaccheo P., Zocchi G. 1998. The effect of commercial humic acid on tomato plant growth and mineral nutrition. J. Plant Nutr., 21(3), 561–575.
  • 2. Adam Alia A.Y., Hussien Ibrahim M.E., Zhou G., Zhu G., Ibrahim Elsiddig A.M., Eltyed Suliman M.S., Mustafa Elradi S.B., Ibrahim Salah E.G. 2022. Interactive impacts of soil salinity and jasmonic acid and humic acid on growth parameters, forage yield and photosynthesis parameters of sorghum plants. South African Journal of Botany, 146, 293–303.
  • 3. AFNOR. 1987. Qualité des sols et méthodes d’analyses. 1ère édition, 133, 3.
  • 4. Aisha H.A., Shafeek M.R., Mahmoud R.A., El-Desuki M. 2014. Effect of various levels of organic fertilizer and humic acid on the growth and roots quality of turnip plants (Brassica rapa). Curr. Sci. Int., 3(1), 7–14.
  • 5. AL-Abody M.A.K., Abd Wahid, M.A., Jamel, F.A. 2021. Effect of Foliar Applicalion of Nano-fertilizer of Iron on Growth and Biological Yield of Varieties Wheat (Triticum aestivum L.). American Journal of Life Science Researches, 9(1), 8–17.
  • 6. Alfatlawi Z.H.C., Alrubaiee S. 2020. Effect of spraying different concentrations of humic acid on the growth and yield of wheat crop (ipa 99 cultivar) in different stages. Plant Archives, 20(2), 1517–1521.
  • 7. Amir S., Jouraiphy A., Meddich A., El Gharous M., Winterton P., Hafidi M. 2010. Structural study of humic acids during composting of activated sludgegreen waste: Elemental analysis, FTIR and 13C NMR. Journal of Hazardous Materials, 177, 524–529.
  • 8. Angeriz-Campoy R., Fdez-Güelfo L.A., Alvarez-Gallego C.J., Romero-García L.I. 2023. Pre-composting of municipal solid wastes as enhancer of bio-hydrogen production through dark fermentation proces. Fuel, 333, 126575.
  • 9. Aylaj M., Lhadi E.K., Adani F. 2018. Municipal Waste and Poultry Manure Compost Affect Biomass Production, Nitrate Reductase Activity and Heavy Metals in Tomato Plants. Compost Science & Utilization, 27, 11–23.
  • 10. Baglieri A., Vindrola D., Gennari M., Negre M. 2014. Chemical and spectroscopic characterization of insoluble and soluble humic acid fractions at different pH values. Chemical and Biological Technologies in Agriculture, 1, 9.
  • 11. Bakry A.B., Sadak M.S., Moamen H.T., El Abd Lateef E.M. 2013. Influence of humic acid and organic fertilizer on growth, chemical constituents, yield and quality of two flax seed cultivars grown under newly reclaimed sandy soils. Int. J. Acad. Res., 5(5), 125–134.
  • 12. Barzegar T., Mahmoodi S., Nekounam F., Ghahremani Z., Khademi O. 2021. Effects of humic acid and cytokinin on yield, biochemical attributes and nutrient elements of radish (Raphanussativus L.) cv. Watermelon, Journal of Plant Nutrition, 45(1), 1–17.
  • 13. Basosi R., Spinelli, D., Fierro, A., Jez, S. 2014. Mineral nitrogen fertilizers: environmental impact of production and use. Fertil. Components, Uses Agric. Environ. Impacts, 3–43.
  • 14. Bayındır Y., Yolcu O.C., Temel F.A., Turan N.G. 2022. Evaluation of a cascade artificial neural network for modeling and optimization of process parameters in co-composting of cattle manure and municipal solid waste. Journal of Environmental Management, 318, 115496.
  • 15. Bernstein N., Gorelick J., Zerahia R., Koch S. 2019. Impact of N, P, K, and humic acid supplementation on the chemical profile of medical cannabis (Cannabis sativa L). Front. Plant Sci., 10, 13.
  • 16. Chen Y., Senesi N., Schnitzer M., 1977. Information Provided on Humic Substances by E4/E6 Ratios. Soil Science Society of America Journal, 41, 352-358. Code de l’environnement, 2003. (Disponible sur : http://www.environnance.fr/media/Textes_reglementaires/dechets/Code_environnement-LV-T4-leg.pdf)
  • 17. Chen Q.A., Qu Z., Ma G., Wang W., Dai J., Zhang M., Wei Z., Liu Z. 2022. Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions. Agricultural Water Management, 263, 107447.
  • 18. Chu B., Chen C., Li J., Chen X., Li Y., Tang W., Jin L., Zhang Y. 2017. Effects of Tibetan turnip (Brassica rapa L.) on promoting hypoxia-tolerance in healthy humans. J. Ethnopharmacol., 195, 246–254.
  • 19. Colla G., Hoagland L., Ruzzi M., Cardarelli M., Bonini P., Renaud Canaguier R., Rouphael Y. 2017. Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Plant Sci, 8.
  • 20. Crawford N.M., Arst Jr, H.N. 1993. The molecular genetics of nitrate assimilation in fungi and plants. Annual review of genetics, 27(1), 115–146.
  • 21. Cunha T.J.F., Novotny E.H., Madari B.E., Martin-Neto L., De O Rezende M.O., Canelas L.P., Benites V.M., 2009. Spectroscopy Characterization of Humic Acids Isolated from Amazonian Dark Earth Soils (Terra Preta De Índio). In Woods W.I., Teixeira W.G., Lehmann J., Steiner C., Prins W.A., Rebellato L. Eds Amazonian Dark Earths: Wim Sombroek’s Vision. 363–372. Springer Science + Business Media B.V., Van Godewijckstraat (Pays-bas).
  • 22. Denre M.P.K., Bandopadhyay A., Chakravarty S., Pal A., Bhattacharya. 2013. Changes in some biochemical characteristics in response to foliar applications of chelator and micronutrients in green pungent pepper. Global Journal of Biotechnology and Biochemistry Research, 1(1), 71–81.
  • 23. DuBois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. 1956. Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28, 350–356.
  • 24. El Herradi E.H., Soudi B., Naman F. 2014. Valorisation des déchets ménagers par extraction des substances humiques (Valorization of household waste by extraction humic substances). Journal of Materials and Environmental Science, 5(5), 1382–1389.
  • 25. El Kadiri B.G., Tahiri S., El Krati M., Kabil E.M., Lhadi E.K. 2017. Sandy Soil Modification by Bio-Composts for Wheat Production. Waste and Biomass Valorization, 1–11.
  • 26. El-Khateeb M.A., El-Leithy A.S., Aljemaa B.A. 2011. Effect of mycorrhizal fungi inoculation and humic acid on vegetative growth and chemical composition of Acacia saligna Labill. Seedlings under different irrigation intervals. JHSOP, 3(3), 283–289.
  • 27. Eshghi S., Garazhian M. 2015. Improving growth, yield and fruit quality of strawberry by foliar and soil drench applications of humic acid. Iran Agricultural Research, 34(1), 14–20.
  • 28. Fan H.M., Wang X.W., Sun X, Li Y.Y., Sun X.Z., Zheng C.S. 2014. Effects of humic acid derived from sediments on growth, photosynthesis and chloroplast ultrastructure in chrysanthemum. Scientia Horticulturae, 177, 118–123.
  • 29. FAO. 2017. World Fertilizer Trends and Outlook to 2020 - Summary Report. Food Agric. Organ. United Nations.
  • 30. Fascella G., Montoneri, E., Francavilla M. 2018. Biowaste versus fossil sourced auxiliaries for plant cultivation: The Lantana case study. Journal of Cleaner Production, 185, 322–330.
  • 31. Fu R., Zhang, Y.T., Guo Y.R., Peng T., Chen F. 2016. Hepatoprotection using Brassica rapa var. rapa L. seeds and its bioactive compound, sinapine thiocyanate, for CCl4- induced liver injury. J. Funct. Foods, 22, 73–81.
  • 32. Gadaleta G., De Gisi S., Notarnicola M. 2021. Feasibility analysis on the adoption of decentralized anaerobic co-digestion for the treatment of municipal organic waste with energy recovery in urban districts of metropolitan areas. Int. J. Environ. Res. Publ. Health., 18, 1–17.
  • 33. Gholami H., Farda F.R., Saharkhiza M.J., Ghani A. 2018. Yield and physicochemical properties of inulin obtained from Iranian chicory roots under vermicompost and humic acid treatments industrial. Crops & Products, 123, 610–616.
  • 34. Guilayn F., Benbrahim M., Rouez M., Crest M., Patureau D., Jimenez J. 2020. Humic-like substances extracted from different digestates: First trials of lettuce biostimulation in hydroponic culture. Waste Management, 104, 239–245.
  • 35. Hua H., Zhang W., Li J., Li J., Liu C., Guo Y., Cheng Y., Pi F., Xie Y., Yao W., Gao Y., Qian H. 2021. Neuroprotection against cerebral ischemia/reperfusion by dietary phytochemical extracts from Tibetan turnip (Brassica rapa L). Journal of Ethnopharmacology, 265, 113410.
  • 36. Jaiarree S., Chidthaisong A., Tangtham N., Polprasert C., Sarobol E., Tyler S.C. 2014. Carbon budget and sequestration potential in a sandy soil treated with compost. Land Degrad. Dev., 25(2), 120–129.
  • 37. Karakurt Y., Unlu H., Unlu, H., Padem H. 2009. The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Acta Agric. Scand. Sec. B., 59(3), 233–237.
  • 38. Keeney D.R., Nelson D.W. 1982. Nitrogen-Inorganic Forms. In A. L. Page (Ed.), Methods of Soil Analysis, Agronomy Monograph 9, Part 2 (2nd ed.,). Madison, WI: ASA, SSSA, 643–698.
  • 39. Khan A., Khan M.Z., Hussain F., Akhtar M.E., Gurmani A.R., Khan S. 2013. Effect of humic acid on the growth, yield, nutrient composition, photosynthetic pigment and total sugar contents of peas (Pisum sativum L). J. Chem. Soc. Pak., 35(1), 206–211.
  • 40. Kumada K., Sato O., Ohsumi Y., Ohta S. 1967.Humus composition of mountain soils in Central Japan with special reference to the distribution of P type humic acid. Soil Science and Plant Nutrition, 13(5), 151–158.
  • 41. 41. Kumada K. 1988. Classification of Hurnic Acids, In Kumada K. Ed. Chemistry of soil organic matter. 17-33. Japan Scientific Societies Press, Tokyo et Elsevier, Amsterdam, Oxford, New York, Tokyo.
  • 42. Lu L., Han Y., Wang J., Xu J., Li Y., Sun M., Zhao F., He C., Sun Y., Wang Y., Huang P., Yu X., Wang J., Yan Y. 2023. PBAT/PLA humic acid biodegradable film applied on solar greenhouse tomato plants increased lycopene and decreased total acid contents. Science of the Total Environment., 871, 162077.
  • 43. Luo X., Keenan T.F., Chen J.M., Croft H., Colin Prentice I., Smith N.G., Walker A.P., Wang H., Wang R., Xu C., Zhang Y. 2021. Global variation in the fraction of leaf nitrogen allocated to photosynthesis. Nat. Commun., 12, 1–10.
  • 44. Ma B., Ma B.L., McLaughlin N.B., Li M., Liu J. 2022. Improvement in dryland crop performance and soil properties with multiple annual applications of lignite-derived humic amendment. Soil & Tillage Research, 218, 105306.
  • 45. Maclean W., Harnly J., Chen J., Chevassus-Agnes S., Gilani G., Livesey G., Warwick,P., 2003. Food energy–methods of analysis and conversion factors. Food and Agriculture Organization of the United Nations Technical Workshop Report.
  • 46. M.E.M.W.E (Ministry of Energy, Mines, Water and Environment). Project nationally appropriate mitigation actions-NAMA. 2015, Mechano-biological treatment (TMB) coupled to co-incineration, Morocco.
  • 47. Monrose G.S. 2009. Standardisation d’une formulation de confiture de chadèque et évaluation des paramètres physico-chimiques, microbiologiques et sensoriels. Université d’Etat, Haiti.
  • 48. Mutlu A., Tas T. 2022. Foliar application of humic acid at heading improves physiological and agronomic characteristics of durum wheat (Triticum durum L.), Journal of King Saud University – Science., 34, 102320.
  • 49. Nardi S., Panucci, M. R., Abenavoli, M. R., Muscolo, A. 1994. Auxin-like effect of humic substances extracted from faeces of Allolobophora Caliginosa and Allolobophora Rosea. Soil Biol. Biochem., 23, 833–836.
  • 50. Nardi S., Schiavon M., Francioso O. 2021. Chemical structure and biological activity of humic substances define their role as plant growth promoters, Molecules., 26, 2256.
  • 51. Owen T. 1996. Fundamentals of UV-visible spectroscopy. Hewlett-Packard, Böblingen, Allemand, 142.
  • 52. Pansu M., Gautheyrou, J. 2007. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. Springer-Verlag, Heidelberg, New York.
  • 53. Peng Y., Bloomfield, K.J., Cernusak, L.A., Domingues, T.F., Colin Prentice, I. 2021. Global climate and nutrient controls of photosynthetic capacity. Commun. Biol., 4, 1–9.
  • 54. Picard D. 1990. Physiologie et production du maïs. La vie du maïs. INRA. Pau, France, 502.
  • 55. Rouphael Y., Cardarelli M., Bonini P., Colla G. 2017. Synergistic Action of a Microbial-based Biostimulant and a Plant Derived-Protein Hydrolysate Enhances Lettuce Tolerance to Alkalinity and Salinity. Plant Sci., 8, 2017.
  • 56. Saghir M., Naimi Y., Laasri L., Tahiri M. 2019. Energy recovery from municipal solid waste in Oujda city (Morocco). J Eng Sci Technol Rev., 12(1), 137–42.
  • 57. Schnitzer M. 1978. Humic Substances: Chemistry and Reactions. In Schnitzer M., Khan S.U. Eds. Soil organic matter. Soil Research Institute Agriculture Canada et Chemistry and Biology Research Institue Agriculture Canada, Ottawa (Canada), 1–64.
  • 58. Shaf M.I., Adnan M., Fahad S., Wahid F., Khan A., Yue Z., Danish S., Zafar-ulHye M., Brtnicky M., Datta R. 2020. Application of single superphosphate with humic acid improves the growth, yield and phosphorus uptake of wheat (Triticum aestivum L.) in calcareous soil. Agronomy-Basel., 10, 15.
  • 59. Suliman A.A., Abramov, A.G., Shalamova, A.A., Badran, A.M. 2020. Effect of humic acid and naphthalene acetic acid on vegetative growth and fruit quality of tomato plants Lycopersicon esculentum. RUDN J. Agron. Anim. Ind., 15(1), 30–39.
  • 60. Swift R.S. 1996. Organic Matter Characterization. In Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabatabai M.A., Johnston C.T., Sumner M.E Eds. Methods of Soil Analysis, Part 3–Chemical Methods. P. 1011–1069. Soil Science Society of America, American Society of Agronomy et Madison, Wisconsin (États-Unis).
  • 61. Tan K.H. 2014. Humic Matter in Soil and the Environment: Principles and Controversies, second ed. CRC Press.
  • 62. Tai-bo C., W. Zhen-lin, L. Lan-ian, W. Ru-Juan, C. Xiao-guang, Z. Xiao-dong, and S. Chun-yu. 2007. Effects of humic acid urea on yield and nitrogen absorption, assimilation and quality of ginger. J. Plant Nutr. Fert., 13, 903.
  • 63. Takuno S., Kawahara T., Ohnishi, O. 2007. Phylogenetic relationships among cultivated types of Brassica rapa L. em. Metzg. as revealed by AFLP analysis. Genet Resour Crop Evol., 54, 279–285.
  • 64. Vanotti M.B., García-Gonzalez M.C., Molinuevo-Salces B., Riano B. 2019. Editorial: new processes for nutrient recovery from wastes. Front. Sustain. Food Syst., 3, 1–2.
  • 65. Wang W., Wang X.Q., Ye H., Hu B., Zhou L., Jabbar S., Zeng X.X., Shen W.B., 2016. Optimization of extraction, characterization and antioxidant activity of polysaccharides from Brassica rapa L. Int. J. Biol. Macromol., 82, 979–988.
  • 66. Yang F., Zhang S.S., Cheng K., Antonietti M. 2019a. A hydrothermal process to turnwaste biomass into artificial fulvic and humic acids for soil remediation. Sci. Total Environ., 686, 1140–1151.
  • 67. Yao K.S.A., Kimse M., Soro D., Fantodji A. 2013. Effect of incorporation of cashews in food rations on growth performance of pigs: phases and post-weaning growth. Int. J. Biol. Chem. Sci., 7(2), 479–488.
  • 68. Zahid A., Fozia., Ramzan M., Bashir M.A., Khatana M.A., Akram M.T., Nadeem S., Qureshi M.S., Iqbal W., Umar M., Walli S. et al. 2020. Effect of humic acid enriched cotton waste on growth, nutritional and chemical composition of oyster mushrooms (Pluerotus ostreatus and Lentinus sajor-caju). Journal of King Saud University – Science, 32, 3249–3257.
  • 69. Zhou L., Monrealc C.M., Xud S., McLaughlinc N.B.., Zhang H., Guocheng H., Jinghui L. 2019. Effect of bentonite-humic acid application on the improvement of soil structure and maize yield in a sandy soil of a semi-arid region. Geoderma, 338, 269–280.
  • 70. Yuan Y., Gai S., Tang C., Jin Y., Cheng K., Antonietti M., Yang F. 2022. Artificial humic acid improves maize growth and soil phosphorus utilization efficiency. Applied Soil Ecology, 179, 104587.
  • 71. Zucconi F., Pera A., Forte M. 1981. Evaluating toxicity of immature compost. Biocycle, 22(2), 54–57.
  • 72. Zucconi F. 1983. Processi di biostabilizzazione della Sostanza organica durante il compostaggio. Atti del Simposio. Recupero biologico ed Utilizzazione agricola dei rifuiti urbani. Napoli, 11-14 octobre, pp. 379-406. Ecotoxicol. Environ. Saf., 75, 55–62.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6685e3cf-806e-4af7-b4cc-b977af9e6ee8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.