PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristics of physicochemical and rheological properties of chitosan hydrogels based on selected hydroxy acids

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chitosan is a natural cationic polymer that dissolves in an acidic environment and forms gels. Its properties depend on the degree of deacetylation and molecular weight. It is a bioactive compound with antibacterial and film-forming properties that allow to increase the regenerative capacity of the skin. Moreover, it is biodegradable, biocompatible, non-toxic, and stable. In this research, chitosan was combined with mandelic and lactobionic acids which are characterized by biological activity and low toxicity. This combination not only has a positive effect on the chitosan solubility, but it also allows to obtain new biomaterials whose positive features of the base ingredients are enhanced by their synergistic effect. The obtained hydrogels were assessed regarding the interaction of chitosan and hydroxy acid molecules, and the stability of the resulting structures was examined. The research was performed by using rheological methods and IR spectroscopy. Chitosan hydrogels made with mandelic acid are characterized by higher viscosity values, as compared to hydrogels containing lactobionic acid. The samples of the obtained hydrogels stored for 7 days showed no signs of degradation and their viscosity values were constantly increasing, which proves the ongoing process of creating new bonds between hydroxy acid molecules and chitosan chains. After this time, the hydrogels with mandelic acid revealed higher viscosity values in comparison to hydrogels made with lactobionic acid. Based on the obtained IR spectra, the shifts of the characteristic chitosan bands as a result of interaction with the tested hydroxy acids were analyzed.
Rocznik
Strony
2--7
Opis fizyczny
Bibliogr. 47 poz., rys., wykr.
Twórcy
  • Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasz 2, 85-089 Bydgoszcz, Poland
  • Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasz 2, 85-089 Bydgoszcz, Poland
  • Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasz 2, 85-089 Bydgoszcz, Poland
  • Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland
Bibliografia
  • [1] Wan M., Qin W., Lei C., et al.: Biomaterials from the sea: Future building blocks for biomedical applications. Bioactive Materials 6 (2021) 4255-4285.
  • [2] Joyce K., Fabra G.T., Bozkurt Y., et al.: Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduction and Targeted Therapy 6 (2021) 122.
  • [3] Mucha M.: Chitozan: wszechstronny polimer ze źródeł odnawialnych. WNT, Warszawa 2010.
  • [4] Kędzierska M., Miłowska K.: Zastosowanie biomateriałów na bazie chitozanu w leczeniu trudno gojących się ran. Postępy Higieny i Medycyny Doświadczalnej 73 (2019) 768-781.
  • [5] Jayakumar R., Menon D., Manzoor K.: Biomedical applications of chitin and chitosan based - A short review. Carbohydrate Polymers 82 (2010) 227-232.
  • [6] Matica A., Menghiu G., Ostafe V.: Antibacterial properties of chitin and chitosans. New Frontiers in Chemistry 26 (2017) 39-54.
  • [7] Moeini A., Pedram P., Makvandi P., et al.: Wound healing and antimicrobial effect of active secondary metabolites in chitosanbased wound dressings: A review. Carbohydrate Polymers 233 (2020) 115839.
  • [8] Bano I., Arshad M., Yasin T., et al.: Chitosan: A potential biopolymer for wound management. International Journal of Biological Macromolecules 102 (2017) 380-383.
  • [9] Baroudi A., García-Payo C., Khayet M.: Structural, Mechanical, and Transport Properties of Electron Beam-Irradiated Chitosan Membranes at Different Doses. Polymers 10 (2018) 1-23.
  • [10] Ostrowska-Czubenko J., Pieróg M., Gierszewska M.: Modyfikacja chitozanu – krótki przegląd. Wiadomości chemiczne 70 (2016), 657-679.
  • [11] Wiśniewska-Wrona M., El Fray M.: Właściwości fizykochemiczne i funkcjonalne biokompozytów polimerowych. Polimery 64 (2019) 23-33.
  • [12] Azuma K., Izumi R., Osaki T., et al.: Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials. Journal of Functional Biomaterials 6 (2015) 104-142.
  • [13] Mazurek P., Kuliński S., Gosk J.: Możliwości wykorzystania chityny i chitozanu w leczeniu ran. Polimery w medycynie 43 (2013) 297-302.
  • [14] Sakthiguru N., Sithique A.: Fabrication of bioinspired chitosan/gelatin/allantoin biocomposite film for wound dressing application. International Journal of Biological Macromolecules 152 (2020) 873-883.
  • [15] Rodríguez-Rodríguez R., Espinosa-Andrews H., Velasquillo-Martínez C.: Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review. International Journal of Polymeric Materials and Polymeric Biomaterials 69 (2018) 1-20.
  • [16] Pouranvari S., Ebrahimi F., Javadi G., et al.: Chemical crosslinking of chitosan/polivinyl Alcohol electrospun nanofibers. Materials and technology 50 (2016) 663-666.
  • [17] Udrea L. E., Hritcu D., Popa M. I. et al.: Preparation and characterization of polyvinyl alcohol-chitosan biocompatible magnetic microparticles. Journal of Magnetism and Magnetic Materials 323 (2011) 7-13.
  • [18] Sionkowska A., Walczak M., Michalska-Sionkowska M.: Preparation and characterization of collagen/chitosan composites with silver nanoparticles. Polymer Composites 41 (2019).
  • [19] Kozlowska J., Stachowiak N., Sionkowska A.: Preparation and characterization of collagen/chitosan poly (ethylene glycol)/ nanohydroxyapatite composite scaffolds. Polymers for Advanced Technologies 30 (2018) 799-803.
  • [20] Sionkowska A., Kaczmarek B., Stalinska J., et al.: Biological Properties of Chitosan/Collagen Composites. Key Engineering Materials 587 (2013) 205-210.
  • [21] Kaczmarek B., Sionkowska A., Stojkovska J.: Characterization of scaffolds based on chitosan and collagen with glycosaminoglycans and sodium alginate addition. Polymer Testing 68 (2018) 229-232.
  • [22] Kyzioł A., Mazgała A., Michna J., et al.: Preparation and characterization of alginate/chitosan formulations for ciprofloxacin-controlled delivery. Journal of Biomaterials Applications 32 (2017) 162-174.
  • [23] Gåserød O., Smidsrød O., Skjåk-Braek G.: Microcapsules of alginate-chitosan - I - A quantitative study of the interaction between alginate and chitosan. Biomaterials 19 (1998) 1815-25.
  • [24] Mahato K.K., Yadav I., Singh M., et al.: Polyvinyl alcohol / chitosan lactate composite hydrogel for controlled drug delivery. Materials Research Express 6 (2019).
  • [25] de Sousa Victor R., Marcelo da Cunha Santos A., Viana de Sousa B. et al.: A Review on Chitosan’s Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment. Materials 13 (2020) 4995.
  • [26] Zhang J., Li C., Xue Z.-Y.: Fabrication of lactobionic-loaded chitosan microcapsules as potential drug carriers targeting the liver. Acta Biomaterialia 7 (2011) 1665-1673.
  • [27] Ni. P., Li R., Ye S., et al.: Lactobionic acid-modified chitosan thermosensitive hydrogels that lift lesions and promote repair in endoscopic submucosal dissection. Carbohydrate Polymers 263 (2021) 118001.
  • [28] Lin W.J., Chen T.D., Liu C.-W.: Synthesis and characterization of lactobionic acid grafted pegylated chitosan and nanoparticle complex application. Polymer 50 (2009) 4166-4174.
  • [29] Gutiérrez L.-F., Hamoudi S., Belkacemi K.: Lactobionic acid: A high value-added lactose derivative for food and pharmaceutical applications. International Dairy Journal 26 (2012) 103-111.
  • [30] Bisinella R.Z.B., Ribeiro J.C.B. et al.: Some instrumental methods applied in food chemistry to characterise lactulose and lactobionic acid. Food Chemistry 220 (2017) 295-298.
  • [31]Alonso S., Rendueles M., Diaz M.: Bio-production of lactobionic acid: Current status, applications and future prospects. Biotechnology Advances 31 (2013) 1275-1291.
  • [32] Alonso S.: Exploiting the bioengineering versatility of lactobionic acid in targeted nanosystems and biomateriale. Journal of Controlled Release 287 (2018) 216-234.
  • [33] Zhao X., Li X., Huang X., et al.: Development of lactobionic acid conjugated-copper chelators as anticancer candidates for hepatocellular carcinoma. Arabian Journal of Chemistry 14 (2021) 103241.
  • [34] Wojciechowska A., Klewicki R., Klewicka E.: The potential of new bionic acids as prebiotics and antimicrobials. LWT - Food Science and Technology 125 (2020) 109246.
  • [35] Tasic-Kostov M., Pavlovic D., Lukic M., et al.: Lactobionic acid as antioxidant and moisturizing active in alkyl polyglucoside-based topical emulsions: the colloidal structure, stability and efficacy evaluation. International Journal of Cosmetic Science 34 (2012) 424-434.
  • [36] Tang S.-Ch., Yang J.-H.: Dual Effects of Alpha-Hydroxy Acids on the Skin. Molecules 23 (2018) 863.
  • [37] Yarolimek M., Kennermur J.: Exploration of mandelic acidbased polymethacrylates: Synthesis, properties, and stereochemical effects. Journal of Polymer Science 58 (2020) 3349-3357.
  • [38] Jankowiak W., Imielski W., Janeba-Bartoszewicz E.: Zastosowanie kwasu migdałowego w peelingu kosmetycznym. Kosmetologia Estetyczna 5 (2016) 57-60.
  • [39] Gao B., Chen L., Li Y.: Preparation of surface imprinted material of single enantiomer of mandelic acid with a new surface imprinting technique and study on its chiral recognition and resolution properties. Journal of Chromatography A 1443 (2016) 10-20.
  • [40] Wang P., Yang J., Jiang L., et al.: A bi-enzymatic system for efficient enantioselective bioconversion of racemic mandelic acid. Journal of Molecular Catalysis B: Enzymatic 94 (2013) 47-50.
  • [41] Lebiedowska A.: Kwas migdałowy jako popularny składnik peelingów chemicznych. Aesthetica 5 (2014) 66-68.
  • [42] Lewandowska K., Sionkowska A., et al.: Characterization of chitosan composites with various clays. International Journal of Biological Macromolecules 65 (2014) 534-541.
  • [43] Retno A.L., Dwi S., Mudasir M.: Preparation of Citric Acid Crosslinked Chitosan/Poly(Vinyl Alcohol) Blend Membranes for Creatinine Transport. Indonesian Journal of Chemistry 16 (2016) 144-150.
  • [44] Kählig H., Hasanovic A., et al.: Chitosan–glycolic acid: a possible matrix for progesterone delivery into skin. Drug Development and Industrial Pharmacy 35 (2009) 997-1002.
  • [45] Lin W.J., Chen T.D., Liu C.W.: Synthesis and characterization of lactobionic acid grafted pegylated chitosan and nanoparticle complex application. Polymer 50 (2009) 4166-4174.
  • [46] Bisinella R., Ribejro J., et al.: Some instrumental methods applied in food chemistry to characterise lactulose and lactobionic acid. Food Chemistry 220 (2017) 295-298.
  • [47] Badawi H., Förner W.: Analysis of the infrared and Raman spectra of phenylacetic acid and mandelic (2-hydroxy-2-phenylacetic) acid. Spectrochimica Acta Part A 78 (2011) 1162–1167.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-668384ef-ff31-4247-99a7-6a0beae0d177
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.