PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficient Markov chain Monte Carlo sampling for electrical impedance tomography

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper studies electrical impedance tomography (EIT) using Bayesian inference [1]. The resulting posterior distribution is sampled by Markov chain Monte Carlo (MCMC) [2]. This paper studies a toy model of EIT as the one presented in [3], and focuses on efficient MCMC sampling for this model. First, this paper analyses the computation of forward map of EIT which is the bottleneck of each MCMC update. The forward map is computed by the finite element method [4]. Here its exact computation was conducted up to five times more efficient, by updating the Cholesky factor of the stiffness matrix [5]. Since the forward map computation takes up nearly all the CPU time in each MCMC update, the overall efficiency of MCMC algorithms can be improved almost to the same amount. The forward map can also be computed approximately by local linearisation, and this approximate computation is much more efficient than the exact one. Without loss of efficiency, this approximate computation is more accurate here, after a log transformation is introduced into the local linearisation process. Later on, this improvement of accuracy will play an important role when the approximate computation of forward map will be employed for devising efficient MCMC algorithms. Second, the paper presents two novel MCMC algorithms for sampling the posterior distribution in the toy model of EIT. The two algorithms are made within the ‘multiple prior update’ [6] and the ‘delayed-acceptance Metropolis-Hastings’ [7] schemes respectively. Both of them have MCMC proposals that are made of localized updates, so that the forward map computation in each MCMC update can be made efficient by updating the Cholesky factor of the stiffness matrix. Both algorithms’ performances are compared to that of the standard single-site Metropolis [8], which is considered hard to surpass [3]. The algorithm of ‘multiple prior update’ is found to be six times more efficient, while the delayed-acceptance Metropolis-Hastings with single-site update is at least twice more efficient.
Rocznik
Strony
223--232
Opis fizyczny
Bibliogr. 14 poz., wykr.
Twórcy
autor
  • Department of Mathematical Sciences Xi’an Jiaotong Liverpool University Renai road 111, Suzhou, China
Bibliografia
  • [1] C. Fox, G. Nicholls. Sampling conductivity images via MCMC. In Proc. of Leeds Annual Stat. Research Workshop, pp. 91–100, 1997.
  • [2] J.S. Liu. Monte Carlo strategies in scientific computing. Springer, 2001.
  • [3] D. Higdon, C.S. Reese, J.D. Moulton, J.A. Vrugt, C. Fox. Posterior exploration for computationally intensive forward models. In S. Brooks, A. Gelman, G.L. Jones, X. Meng [Eds.], Handbook of Markov chain Monte Carlo, CHAPMAN & HALL/CRC, pp. 401–418, 2011.
  • [4] A. Ern, J. Guermond. Theory and practice of finite elements. Springer, 2004.
  • [5] T.A. Davis, W.W. Hager. Multiple-rank modifications of a sparse Cholesky factorization. SIAM Journal on Matrix Analysis and Applications, 22(4): 997–1013, 2001.
  • [6] G.K. Nicholls, C. Fo. Prior modeling and posterior sampling in impedance imaging. Proc. SPIE, 3459: 116–127, 1998.
  • [7] J.A. Christen, C. Fox. MCMC using an approximation. Journal of Computational and Graphical Statistics, 14(4): 795–810, 2005.
  • [8] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller. Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21: 1087–1091, 1953.
  • [9] M. Cheney, D. Isaacson, J.C. Newell. Electrical impedance tomography. SIAM Review, 41(1): 85–101, 1999.
  • [10] D.S. Holder. Electrical impedance tomography: methods, history and applications, Institute of Physics Publishing, Bristol, UK, 2005.
  • [11] W.K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1): 97–109, 1970.
  • [12] W.S. Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal of Computational Statistical Association, 74: 829–836, 1979.
  • [13] T.A. Davis. CHOLMOD Version 1.0 User Guide. Dept. of Computer and Information Science and Engineering, University of Florida, 2005.
  • [14] W.R. Gilks, S. Richardson, D.J. Spiegelhalter. Markov chain Monte Carlo in practice. CHAPMAN & HALL, 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-667da6b4-8759-4fb5-bec8-4014dbed7239
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.