PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Changes in swimming technique and physical performance after 8 weeks of lifeguard rescue training: an exploratory study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Every lifeguard undergoes numerous tests that aim to check, among others, strength, speed, resistance etc., which is finally verified by a rescue action without equipment. The level of mastering elements of the swimming technique and swimming kinematics is a key element to succeed in swiftly reaching the drowning person which is limited by the time needed for drowning. The aim of this study was two-fold: (i) to analyze the variations of swimming kinematics after 8-weeks of lifeguard training, and (ii) to analyze the relationships between changes in kinematic outcomes and swimming performance over 25 and 100 meters. Methods: Six lifeguard candidates (age: 21.0 ± 1.09 years old; three female and three male students) voluntarily participated in this study. The 4 × 25-m freestyle test and a 100-m freestyle tests were performed twice (before and after 8-week training period). The tests were video-recorded and the following kinematic variables were calculated: swimming velocity, stroke frequency, stroke length and stroke index. Results: No significant changes in kinematic variables were observed. However, a strong correlation (r = 0.83) occurred between the swimming velocity of the 4 × 25 m test and the finish velocity of the 100 m test. The stroke index of the 4 × 25 m test was strongly correlated with the swimming velocity of the 100 m test (r = 0.89). Conclusions: Although lifeguard training did not improve swimming kinematics, it is worthwhile using training methods to check the preparation level of a lifeguard to ensure that he/she is properly trained to help people drowning in water bodies.
Słowa kluczowe
Rocznik
Strony
111--118
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Department of Swimming, Gdansk University of Physical Education and Sport, Gdańsk, Poland.
  • Department of Swimming, Gdansk University of Physical Education and Sport, Gdańsk, Poland.
  • Department of Swimming, Gdansk University of Physical Education and Sport, Gdańsk, Poland.
  • Pomeranian University of Applied Sciences, Starogard Gdański, Poland.
  • Department of Swimming, Gdansk University of Physical Education and Sport, Gdańsk, Poland.
autor
  • Institute of Health, National University of Water and Environmental Engineering, Rivne, Ukraine.
  • University WSB Merito, Wrocław, Poland.
Bibliografia
  • [1] ABDI N., HAMEDINIA M.R., IZANLOO Z., HEADAYATPOUR N., Resistance training and the neuromuscular function and the maximal quadriceps strength, Balt. J. Health Phys. Act., 2019, 11 (1), 45–53, DOI: 10.29359/BJHPA.11.1.05.
  • [2] ABELAIRAS-GOMEZ C., BARCALA-FUERLOS R., MECIAS-CALVO M., REY-EIRAS E., LOPEZ-GARCIA S., COSTAS-VEIGA J., BORES-CEREZAL A., PALACIOS-AGUILAR J., Prehospital emergency medicine at the beach: what is the effect of fins and rescue tubes in lifesaving and cardiopulmonary resuscitation after rescue?, Wilderness Environ. Med., 2017, 28 (3), 176–184, DOI: 10.1016/j.wem.2017.03.013.
  • [3] ABRALDES J.A., FERNANDES R.J., MORAN-NAVARRO R., Previous intensive running or swimming negatively affect CPR effectiveness, Int. J. Environ. Res. Public Health, 2021, 18 (18), 9843, DOI: 10.3390/ijerph18189843.
  • [4] ABRALDES J.A., SOARES S., LIMA A.B., FERNANDES R.J., VILAS-BOAS J.P., The effect of fin use on the speed of lifesaving rescues, Int. J. Aquatic Res. Educ., 2007, 1 (4), 329–340, DOI: 10.25035/ijare.01.04.04.
  • [5] ARANDA-GARCIA S., HERRERA-PEDROVIEJO E., Quick Rescue self-inflating flotation device for rescuing sea swimmers in distress versus conventional tube or buoy rescues, Emergencias, 2020, 32 (2), 105–110.
  • [6] AVRAMIDIS S., A biomechanical approach of the life preserver throwing for humanitarian and competitive lifesaving: a pilot case study, Revista de Salvamento Acuatico y Primeros Auxilios, 2011, 3 (34), 265–269.
  • [7] BARBOSA T.M., COSTA M.J., MARINHO D.A., COELHO J., MOREIRA M., SILVA A.J., Modelling the links between young swimmers’ performance: energetic and biomechanical profiles, Pediatr. Exerc. Sci., 2010, 22 (3), 379–391, DOI: 10.1123/pes.22.3.379.
  • [8] BARBOSA T.M., FERNANDES R.J., KESKINEN K.L., VILAS-BOAS J.P., The influence of stroke mechanics into energy cost of elite swimmers, Eur. J. Appl. Physiol., 2008, 103 (2), 139–149, DOI: 10.1007/s00421-008-0676-z.
  • [9] BARCALA-FUERLOS R., SZPILMAN D., PALACIOS-AGUILAR J., COSTAS-VEIGA J., ABELAIRAS-GOMEZ C., BORES-CEREZAL A., LOPEZ-GARCIA S., RODRIGUEZ-NUNEZ A., Assessing the efficacy of rescue equipment in lifeguard resuscitation efforts for drowning, Am. J. Emerg. Med., 2016, 34 (3), 480–485, DOI: 10.1016/j.ajem.2015.12.006.
  • [10] BIELEC G., MAKAR P., Variability in swimmers’ individual kinematics parameters versus training loads, Biol. Sport, 2010, 27, 143–147.
  • [11] BIELEC G., MAKAR P., KUJACH S., LASKOWSKI R., Biomechanical and physiological effects of two-week sprint interval training in collegiate swimmers, Sci. Sports, 2017, 32 (4), 239–242, DOI: 10.1016/j.scispo.2016.05.002.
  • [12] COCHEN R.C.Z., CLERY P.W., MASON B., Improving understanding of human swimming using smoothed particle hydrodynamics, Proceedings of 2010 Singapore IFMBE, 6th World Congress of Biomechanics, 2010, 31, 174–177, DOI: 10.1007/978-3-642-14515-5_45.
  • [13] CROWLEY E., HARRISON A.J., LYONS M., The impact of resistance training on swimming performance: a systematic review, Sports Med., 2017, 47 (11), 2285–2307, DOI: 10.1007/s40279-017-0730-2.
  • [14] DEKERLE J., PATERSON J., Muscle fatigue when swimming intermittently above and below critical speed, Int. J. Sports Physiol. Perform., 2015, 11 (5), 602–607, DOI: 10.1123/ijspp.2015-0429.
  • [15] DOMINGUEZ-CASTELLS R., ARELLANO R., Effect of different loads on stroke and coordination parameters during freestyle semi-tethered swimming, J. Hum. Kinet., 2012, 32, 33–41, DOI: 10.2478/v10078-012-0021-9.
  • [16] FIGUEIREDO P., TOUSSAINT H.M., VILAS-BOAS J.P., FERNANDES R.J., Relation between efficiency and energy cost with coordination in aquatic locomotion, Eur. J. Appl. Physiol., 2013, 113 (3), 651–659, DOI: 10.1007/s00421-012-2468-8.
  • [17] FUNAI Y., MATSUNAMI M., TABA S., Physiological responses and swimming technique during upper limb critical stroke rate training in competitive swimmers, J. Hum. Kinet., 2019, 70 (1), 61–68, DOI: 10.2478/hukin-2019-0026.
  • [18] GONJO T., OLSTAD B.H., Race analysis in competitive swimming: a narrative review, Int. J. Environ. Res. Public Health, 2021, 18 (1), 69, DOI: 10.3390/ijerph18010069.
  • [19] GULBIN J.P., FELL J.W., GAFFNEY P.T., A physiological profile of elite surf ironman, full time lifeguards & patrolling surf life savers, Aust. J. Sci. Med. Sport, 1996, 28 (3), 86–90.
  • [20] LATT E., JURIMAE J., MAESTU J., PURGE P., RAMSON R., HALJASTE K., KESKINEN K.L., RODRIGUEZ F.A., JURIMAE T., Physiological, biomechanical and anthropometrical predictors of sprint swimming performance in adolescent swimmers, J. Sports Sci. Med., 2010, 9 (3), 398–404.
  • [21] MAKAR P., BIELEC G., Lactate and glucose concentrations in assessing anaerobic capacity in an elite junior swimmer – case study, Hum. Mov., 2013, 14 (4), 360–365, DOI: 10.2478/humo-2013-0044.
  • [22] MIHĂILESCUA L., DUBIŢB N., Contributions for programming and implementing an evaluation instrument of the swimming technique correctness, Procedia: Soc. Behav. Sci., 2015, 180,1283–1288, DOI: 10.1016/j.sbspro.2015.02.265.
  • [23] MUNIZ-PARDOS B., GOMEZ-BRUTON A., MATUTE-LLORENTE A., GONZALEZ-AGUERO A., GOMEZ-CABELLO A., GONZALO- -SKOK O., CASAJUS J. A., VICENTE-RODRIGUES G., Swimspecific resistance training: a systematic review, J. Strength Cond. Res., 2019, 33 (10), 2875–2881, DOI: 10.1519/JSC.0000000000003256.
  • [24] NEVILL A.M., NEGRA Y., MYERS T.D., SAMMOUD S., CHAABENE H., Key somatic variables associated with, and differences between the 4 swimming strokes, J. Sport Sci., 2020, 38 (7), 787–794, DOI: 10.1080/02640414.2020.1734311.
  • [25] NORDSBORG N.B., ARAGON-VELA J., BONNE T., MOHR M., A 3-min all-out upper-body ergometer test for competitive swimmers, Int. J. Sports Med., 2021, 42 (8), 724–730, DOI:10.1055/a-1312-6797.
  • [26] PIATRIKOVA E., WILLSMER N.J., SOUSA A.C., GONZALEZ J.T., WILLIAMS S., Individualizing training in swimming: evidence for utilizing the critical speed and critical stroke rate concepts, Int. J. Sports Physiol. Perform., 2020, 15 (5), 617–624, DOI: 10.1123/ijspp.2019-0546.
  • [27] PUIG-DIVI A., ESCALONA-MARFIL C., PADULLES-RIU J.M., BUSQUETS A., PADULLES-CHANDO X., MARCOS-RIUZ D., Validity and reliability of the Kinovea program in obtaining angles and distances using coordinates in 4 perspectives, PLoS One, 2019, 14 (6), e0216448, DOI: 10.1371/journal.pone.0216448.
  • [28] REICHMUTH D., OLSTAD B.H., BORN D.P., Key performance indicators related to strength, endurance, flexibility, anthropometrics, and swimming performance for competitive aquatic lifesaving, Int. J. Environ. Res. Public Health, 2021, 18 (7), 3454, DOI: 10.3390/ijerph18073454.
  • [29] REILLY T., IGGLEDEN C., GENNSER M., TIPTON M., Occupational fitness standards for beach lifeguards. Phase 2: The development of an easily administered fitness test, Occup. Med., 2006, 56 (1), 12–17, DOI: 10.1093/occmed/kqi168.
  • [30] REJMAN M., WIESNER W., SILAKIEWICZ P., KLAROWICZ A., ABRALDES A.J., Comparison of temporal parameters of swimming rescue elements when performed using dolphin or flutter kick with fins – didactical approach, J. Sport Sci. Med., 2012,11 (4), 682–689.
  • [31] RUIZ-NAVARRO J.J., MOROUCO P.G., ARELLANO R., Relationship between tethered swimming in a flume and swimming performance, Int. J. Sports Physiol. Perform., 2020, 15 (8),1087–1094, DOI: 10.1123/ijspp.2019-0466.
  • [32] SCHWEBEL D.C., JONES H.N., HOLDER E., MARCIANI F., Lifeguards: a forgotten aspect of drowning prevention, J. Inj. Violence Res., 2010, 2 (1), 1–3, DOI: 10.5249/jivr.v2i1.32.
  • [33] SEIFERT L., TOUSSAINT H.M., ALBERY M., SCHNITZLER C., CHOLLET D., Arm coordination, power, and swim efficiency in national and regional front crawl swimmers, Hum. Mov. Sci., 2010, 29 (3), 426–439, DOI: 10.1016/j.humov.2009.11.003.
  • [34] STRZAŁA M., SOKOŁOWSKI K., WĄDRZYK Ł., STASZKIEWICZ R., KRYST Ł., ŻEGLEŃ M., KRĘŻAŁEK P., MACIEJCZYK M., Oxygen uptake kinetics and biological age in relation to pulling force and 400-m front crawl performance in young swimmers, Front Physiol., 2023, 6 (14), 1229007, DOI: 10.3389/fphys.2023.1229007.
  • [35] WASHINO S., MAYFIELD D.L., LICHTWARK G.A., MANKYOU H., YOSHITAKE Y., Swimming performance is reduced by reflective markers intended for the analysis of swimming kinematics, J. Biomech., 2019, 91, 109–113, DOI: 10.1016/j.jbiomech.2019.05.017.
  • [36] ZHAN J.M., LI T.Z., CHEN X.B., LI Y.S., Hydrodynamic analysis of human swimming based on VOF method, Comput. Methods Biomech. Biomed. Engin., 2017, 20 (6), 645–652, DOI: 10.1080/10255842.2017.1284822.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-667a7035-c6d2-4e71-97b3-b5261912d144
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.