PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exp(–ϕ(η))–expansion Method and Shifted Chebyshev Wavelets for Generalized Sawada-Kotera of Fractional Order

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study a nonlinear generalized Sawada-Kotera equation of fractional order via the exp(–ϕ(η))–expansion method and Shifted modified Chebyshev Wavelet technique. We obtain abundant exact solutions and approximate solution of the equation. The results of the study shows that the exp(–ϕ(η))–expansion method is very effective and proficient for solving nonlinear fractional partial differential equations. The solitary wave solutions are obtained through the hyperbolic, trigonometric, exponential and rational functions. Graphical representations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very expedient for fractional PDEs, and could be extended to other physical problems. Results of the proposed methods show an excellent conformity with the exact solution of the considered problem.
Wydawca
Rocznik
Strony
173--190
Opis fizyczny
Bibliogr. 10 poz., rys., tab., wykr.
Twórcy
  • Department of Mathematics, Faculty of Sciences, HITEC University, Taxila, Pakistan
autor
  • Department of Mathematics, Faculty of Sciences, HITEC University, Taxila, Pakistan
Bibliografia
  • [1] Yang, XJ. Advanced Local Fractional Calculus and Its Applications, World Sci. New York, NY, USA, 2012; URL https://books.google,pl/books?id=52Fe9g-HMrAC.
  • [2] Yang, XJ, Baleanu D, Machado JT. Mathematical aspects of Heisenberg uncertainty principle within local factional Fourier analysis, Boundary Value Probs. 2013;1:1-6. doi: 10.1186/1687-2770-2013-131.
  • [3] Ying XJ, Baleanu D, Srivastava HM, Machado JT. On local fractional continuous wavelet transform, Abst. Appl. Analy. vol. 2013; Hindawi Publishing Corporation. Article ID 725416, 5 pages. URL http://dx.doi.org/10.1155/2013/725416.
  • [4] Odibat Z, Momani S. Numerical solution of Fokker-Planck equation with space-and time fractional derivatives. Phys. Lett. A. 2007; 369 (5): 349-358. doi: 10.1016/j.physleta.2007.05.002.
  • [5] Shawagfeh NT. Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput. 2002; 131 (2): 517-529. doi: 10.1016/S0096-3003(01)00167-9.
  • [6] Shi LM, Zhang LF, Meng H, Zhao HW, Zhou SP. A method to construct Weierstrass elliptic function solution for nonlinear equations. Int J Mod Phys B. 2011; 25 (14): 1931-1939. URL http://dx.doi.org/10.1142/S0217979211100436.
  • [7] Ali AT. New generalized Jacobi elliptic function rational expansion method. J Comput Appl Math. 2011; 235 (14): 4117-4127. URL http://dx.doi.org/10.1016/j.cam.2011.03.002.
  • [8] Yƨldƨrƨm A, Kocak H. Homotopy perturbation method for solving the space-time fractional advection-dispersion equation. Adv Water Resour. 2009; 32 (12): 1711-1716. URL http://dx.doi.org/10.1016/j.advwatres.2009.09.003.
  • [9] Mohyud-Din ST, Noor MA, Waheed A. Variation of parameter method for initial and boundary value problems 1. World Appl Sci. J. 2010; 11 (5): 622-639. ISSN: 1818-4952.
  • [10] Matinfar M, Saeidy M. Application of Homotopy Analysis method to fourth order parabolic partial differential equations. Appl Appl Math. 2010; 5 (l): 70-80. ISSN: 1932-9466. URL http://pvamu.edu/aam.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66765e97-18c7-47bd-965b-09432171c71d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.