Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We analyse storage problems of digital images in accordance with image quality and image compression efficiency. Storage problems are relevant for Cloud storage and file hosting services, online file storage providers, social networks, etc. In this paper, an approach is proposed to process a group of images with a JPEG algorithm that all the processed images satisfy the minimum threshold of quality with the automatic selection of the quality factor (QF). The experimental investigation reveals advantages of the compression efficiency of the proposed approach over the traditional JPEG algorithm. The proposed approach enables saving storage spaces while maintaining the desirable image quality.
Wydawca
Rocznik
Tom
Strony
29--34
Opis fizyczny
Bibliogr. 18 poz., fig., tab.
Twórcy
autor
- Vilnius University, Institute of Mathematics and Informatics, Akademijos str. 4, LT-08663, Vilnius
autor
- Vilnius University, Institute of Mathematics and Informatics, Akademijos str. 4, LT-08663, Vilnius
autor
- Vilnius Gediminas Technical University, Sauletekio av. 11, LT-10223, Vilnius
Bibliografia
- 1. Coulombe, S. and Pigeon, S., Low-Complexity Transcoding of JPEG Images With Near-Optimal Quality Using a Predictive Quality Factor and Scaling Parameters. IEEE Transactions on Image Processing, vol. 19, no. 3, 2010, 712-721.
- 2. Eskicioglu, A. M., Quality measurement for monochrome compressed images in the past 25 years. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, 2000, 1907-1910.
- 3. Forczmanski, P. and Mantiuk, R., Adaptive and Quality-Aware Storage of JPEG Files in the Web Environment. International Conference, ICCVG, Warsaw, 2014.
- 4. Gonzalez, R., Woods, R. and Eddins, S., Digital Image Processing Using MATLAB, New Jersey: Prentice Hall, 2003.
- 5. Guo, Y., Hastie, T. and Tibshirani, R., Regularized Discriminant Analysis and Its Application in Mi-croarrays. vol. 8, no. 1, 2007, 86-100.
- 6. Haralick, R. and Shapiro, L., Computer and Robot Vision: Vol. 1, Addison-Wesley, 1992.
- 7. Haralick, R., Shanmugan, K. and Dinstein, I., Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, Vols. SMC-3, 1973, 610-621.
- 8. Moorthy, A. K. and Bovik, A., Blind Image Quality Assessment: From Natural Scene Statistics to Perceptual Quality. IEEE Transactions on Image Processing, vol. 20, no. 12, 2011, 3350-3364.
- 9. Pigeon, S. and Coulombe, S., K-Means Based Prediction of Transcoded JPEG File Size and Structural Similarity. International Journal of Multimedia Data Engineering and Management, vol. 3, no. 2, 2012, 41-57.
- 10. Pigeon, S. and Coulombe, S., Computationally efficient algorithms for predicting the file size of JPEG images subject to changes of quality factor and scaling. Proc. 24th Queen’s Biennial Symp. Kingston, Canada, Jun., 2008, 378–382.
- 11. Salomon, D., A guide to data compression methods. Springer Science & Business Media, 2013.
- 12. Solomon, A. and Breckon, T., Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab. John Wiley & Sons, Inc., 2011.
- 13. Tichonov, J. and Kurasova, O., Classification of Large Images Before Applying Compression Algorithms. Journal of Young Scientists, vol. 1, no. 43, 2015.
- 14. Tichonov, J., Kurasova, O. and Filatovas, E., Quality Prediction of Compressed Images via Classi-fication. Image Processing and Communications Challenges 8, Bydgoszcz, 2017.
- 15. Viraktamath, S. V. and Attimarad, G. V., Performance Analysis of JPEG Algorithm. International Conference on Signal Processing, Communication, Computing and Networking Technologies (ICSCCN 2011), 2011, 629-633.
- 16. Wallace, G. K., The JPEG still picture compression standart. IEEE Transactions on Consumer Electro-nics, vol. 38, no. 1, 1992, 18-34.
- 17. Wang, Z., Bovik, A. C., Sheikh, H. R. and Simoncelli, E. P., Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, vol. 13, no. 4, 2004, 600-612.
- 18. Xiao, J., Hays, J., Ehinger, K., Oliva A. and Torralba, A., SUN Database: Large-scale Scene Recognition from Abbey to Zoo. IEEE Conference on Computer Vision and Pattern Recognition, 2010.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66759d9d-d51e-4392-ac50-67de37040111