PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two-stage instrumental variables identification of polynomial Wiener systems with invertible nonlinearities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new two-stage approach to the identification of polynomial Wiener systems is proposed. It is assumed that the linear dynamic system is described by a transfer function model, the memoryless nonlinear element is invertible and the inverse nonlinear function is a polynomial. Based on these assumptions and by introducing a new extended parametrization, the Wiener model is transformed into a linear-in-parameters form. In Stage I, parameters of the transformed Wiener model are estimated using the least squares (LS) and instrumental variables (IV) methods. Although the obtained parameter estimates are consistent, the number of parameters of the transformed Wiener model is much greater than that of the original one. Moreover, there is no unique relationship between parameters of the inverse nonlinear function and those of the transformed Wiener model. In Stage II, based on the assumption that the linear dynamic model is already known, parameters of the inverse nonlinear function are estimated uniquely using the IV method. In this way, not only is the parameter redundancy removed but also the parameter estimation accuracy is increased. A numerical example is included to demonstrate the practical effectiveness of the proposed approach.
Rocznik
Strony
571--580
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • Institute of Control and Computation Engineering, University of Zielona Góra, ul. Szafrana 2, 65-516 Zielona Góra, Poland
  • Institute of Control and Computation Engineering, University of Zielona Góra, ul. Szafrana 2, 65-516 Zielona Góra, Poland
Bibliografia
  • [1] Al-Duwaish, H., Karim, M. and Chandrasekar, V. (1996). Use of multilayer feedforward neural networks in identification and control of Wiener model, IEE Proceedings: Control Theory and Applications 143(3): 255–258, DOI: 10.1049/ip-cta:19960376.
  • [2] Aljamaan, I., Westwick, D., Foley, M. and Chandrasekar, V. (2016). Identification of Wiener models in the presence of ARIMA process noise, IFAC-PapersOnLine 49(7): 1008–1013, DOI: 10.1016/j.ifacol.2016.07.334.
  • [3] Ase, H. and Katayama, T. (2015). A subspace-based identification of two-channel Wiener systems, IFAC-PapersOnLine 48(28): 638–643, DOI: 10.1016/j.ifacol.2015.12.201.
  • [4] Billings, S. and Fakhouri, S. (1978). Theory of separable processes with applications to the identification of nonlinear systems, Proceedings of the Institution of Electrical Engineers 125(10): 1051–1058, DOI: 10.1049/piee.1978.0241.
  • [5] Billings, S. and Fakhouri, S. (1982). Identification of systems containing linear dynamic and static nonlinear elements, Automatica 18(1): 15–26, DOI: 0.1016/0005-1098(82)90022-X.
  • [6] Bottegal, G., Castro-Garcia, R. and Suykens, J. (2017). On the identification of Wiener systems with polynomial nonlinearity, 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, Australia, DOI: 10.1109/CDC.2017.8264635.
  • [7] Boyd, S. and Chua, L.O. (1985). Fading memory and the problem of approximating nonlinear operators with Volterra series, IEEE Transactions on Circuits and Systems 32(11): 1150–1161, DOI: 10.1109/TCS.1985.1085649.
  • [8] Brouri, A. and Slassi, S. (2015). Frequency identification approach for Wiener systems, International Journal of Computational Engineering Research (IJCER) 5(8): 12–16.
  • [9] Ding, F., Liu, X. and Liu, M. (2015). The recursive least squares identification algorithm for a class of Wiener nonlinear systems, Journal of the Franklin Institute 353(7): 1518–1526, DOI: 10.1016/j.jfranklin.2016.02.013.
  • [10] Dong, R., Tan, Q. and Tan, Y. (2009). Recursive identification algorithm for dynamic systems with output backlash and its convergence, International Journal of Applied Mathematics and Computer Science 19(4): 631–638, DOI: 10.2478/v10006-009-0050-2.
  • [11] Fan, D. and Lo, K. (2009). Identification for disturbed MIMO Wiener systems, Nonlinear Dynamics 55(1): 31–42, DOI: 10.1007/s11071-008-9342-6.
  • [12] Figueroa, J., Biagiola, S., Alvarez, M., Castro, L. and Agamennoni, O.E. (2013). Robust model predictive control of a Wiener-like system, Journal of the Franklin Institute 350(3): 556–574, DOI: 10.1016/j.jfranklin.2012.12.016.
  • [13] Giri, F., Radouane, A., Brouri, A. and Chaoui, F. (2014). Combined frequency-prediction error identification approach for Wiener systems with backlash and backlash-inverse operators, Automatica 50(3): 768–783, DOI: 10.1016/j.automatica.2013.12.030.
  • [14] Gómez, M. and Baeyens, E. (2002). Subspace identification of multivariable Hammerstein and Wiener models, IFAC Proceedings Volumes 35(1): 55–60, DOI: 10.3182/20020721-6-ES-1901.00420.
  • [15] Gómez, M. and Baeyens, E. (2005). Subspace-based identification algorithms for Hammerstein and Wiener models, European Journal of Control 11(2): 127–136, DOI: 10.3166/ejc.11.127-136.
  • [16] Greblicki, W. (1997). Nonparametric approach to Wiener system identification, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 44(6): 538–545, DOI: 10.1109/81.586027.
  • [17] Greblicki, W. (2001). Recursive identification of Wiener systems, International Journal of Applied Mathematics and Computer Science 11(4): 977–991.
  • [18] Ipanaqué, W. and Manrique, J. (2011). Identification and control of pH using optimal piecewise linear Wiener model, IFAC Proceedings Volumes 44(41): 12301–12306, DOI: 10.3182/20110828-6-IT-1002.03695.
  • [19] Janczak, A. (2005). Identification of Nonlinear Systems Using Neural Networks and Polynomial Models. A Block-Oriented Approach, Springer Verlag, Berlin/Heidelberg/New York, NY.
  • [20] Janczak, A. (2007). Instrumental variables approach to identification of a class of MIMO Wiener systems, Nonlinear Dynamics 48(3): 275–284, DOI: 10.1007/s11071-006-9088-y.
  • [21] Janczak, A. (2018). Least squares and instrumental variables identification of polynomial Wiener systems, 23rd International Conference on Methods and Models in Automation and Robotics (MMAR’2018), Międzyzdroje, Poland, DOI: 10.1109/MMAR.2018.8486049.
  • [22] Jansson, D. and Medvedev, A. (2015). Identification of polynomial Wiener systems via Volterra–Laguerre series with model mismatch, IFAC-PapersOnLine 48(11): 831–836, DOI: 10.1016/j.ifacol.2015.09.293.
  • [23] Kazemi, M. and Arefi, M. (2017). A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems, ISA Transactions 67: 382–388, DOI: 10.1016/j.isatra.2016.12.002.
  • [24] Kim, K.-K., Rios-Patronc, E. and Braatz, R. (2012). Robust nonlinear internal model control of stable Wiener systems, Journal of Process Control 22(8): 1468–1477, DOI: 10.1016/j.jprocont.2012.01.019.
  • [25] Ławryńczuk, M. (2013). Practical nonlinear predictive control algorithms for neural Wiener models, Journal of Process Control 22(5): 696–714, DOI: 10.1016/j.jprocont.2013.02.004.
  • [26] Ławryńczuk, M. (2015). Nonlinear state-space predictive control with on-line linerisation and state estimation, International Journal of Applied Mathematics and Computer Science 25(4): 833–847, DOI: 10.1515/amcs-2015-0060.
  • [27] Ławryńczuk, M. (2016). Modelling and predictive control of a neutralisation reactor using sparse support vector machine Wiener models, Neurocomputing 205: 311–328, DOI: 10.1016/j.neucom.2016.03.066.
  • [28] Mahataa, K., Schoukens, J. and Cock, A.D. (2016). Information matrix and D-optimal design with Gaussian inputs for Wiener model identification, Automatica 69: 65–77, DOI: 10.1016/j.automatica.2016.02.026.
  • [29] Rollins, D., Mei, Y., Loveland, S. and Bhandari, N. (2016). Block-oriented feedforward control with demonstration to nonlinear parameterized Wiener modeling, Chemical Engineering Research and Design 109: 397–404, DOI: 10.1016/j.cherd.2016.02.016.
  • [30] Schoukens, M. and Tiels, K. (2011). Parametric MIMO parallel Wiener identification, 2011 50th IEEE Conference on Decision and Control/European Control Conference, Orlando, FL, USA, DOI: 10.1109/CDC.2011.6160230.
  • [31] Schoukens, M. and Tiels, K. (2017). Identification of block-oriented nonlinear systems starting from linear approximations: A survey, Automatica 85: 272–292, DOI: 10.1016/j.automatica.2017.06.044.
  • [32] Stanisławski, R., Latawiec, K., Gałek, M. and Łukaniszyn, M. (2014). Modeling and identification of a fractional-order discrete-time SISO Laguerre–Wiener system, 19th International Conference on Methods and Models in Automation and Robotics (MMAR’2014), Międzyzdroje, Poland, DOI: 10.1109/MMAR.2014.6957343.
  • [33] Tiels, K. and Schoukens, J. (2014). Wiener system identification with generalized orthonormal basis functions, Automatica 50(12): 3147–3154, DOI: 10.1016/j.automatica.2014.10.010.
  • [34] Van Vaerenbergh, S., Via, J. and Santamaria, I. (2013). Blind identification of SIMO Wiener systems based on kernel canonical correlation analysis, IEEE Transactions on Signal Processing 61(9): 2219–2230, DOI: 10.1109/TSP.2013.2248004.
  • [35] Vörös, J. (2007). Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities, Systems & Control Letters 56(2): 99–105, DOI: 10.1016/j.sysconle.2006.08.001.
  • [36] Vörös, J. (2015). Identification of nonlinear cascade systems with output hysteresis based on the key term separation principle, Applied Mathematical Modelling 39(18): 5531–5539, DOI: 10.1016/j.apm.2015.01.018.
  • [37] Westwick, D. and Verhaegen, M. (1996). Identifying MIMO Wiener systems using subspace model identification methods, Systems & Control Letters 52(2): 235–258, DOI: 10.1016/0165-1684(96)00056-4.
  • [38] Wigren, T. (1993). Recursive prediction error identification algorithm using the nonlinear Wiener model, Automatica 29(4): 1011–1025, DOI: 10.1016/0005-1098(93)90103-Z.
  • [39] Xiong, W., Yang, X., Ke, L. and Xu, B. (2015). EM algorithm-based identification of a class of nonlinear Wiener systems with missing output data, Nonlinear Dynamics 80(1–2): 329–339, DOI: 10.1007/s11071-014-1871-6.
  • [40] Yang, X., Xiong, W., Ma, J. and Wang, Z. (2017). Robust identification of Wiener time-delay system with expectation-maximization algorithm, Journal of the Franklin Institute 354(13): 5678–5693, DOI: 10.1016/j.jfranklin.2017.05.023.
  • [41] Zhou, L., Li, X. and Pan, F. (2013). Gradient based iterative parameter identification for Wiener nonlinear systems, Applied Mathematical Modelling 37(16–17): 8203–8209, DOI: 10.1016/j.apm.2013.03.005.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6671b961-3f8b-448e-a384-d1f147251c6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.