Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In line with modern era, it is a high demand of renewable energies due to fossil fuels crisis. This study applies food garbage to produce biogas - an alternative renewable energy source – under lab-scale batch and semi-continuous reactors. Designing with four loading total solid (TS) rates of 1.0%, 1.5%, 2.0%, and 2.5%, the batch and the semi-continuous testing set up in 1.5 L and 21 L plastic reactors, respectively. Both testing was run in 60 days, produced biogas volume and compositions were recorded daily in semi-continuous reactors, and every ten days in the batch reactors. The results show that in batch testing, the biogas yields of treatments 1.0%TS, 1.5%TS, and 2.0%TS were better than those for treatment of 2.5%TS; however, %CH4 concentrations were better for treatments 2.0%TS and 2.5%TS. For the semi-continuous testing, the loading rate of 2.5% total solid food garbage produced the highest biogas yield which could meet the household demand of daily gas. Up to the day of 60, the %CH4 concentration was nearly 45% which proof the biogas can be used for cooking. H2S concentration in biogas was high which must be reduced to use produced biogas for cooking purpose. Further study needs to avoid accumulation of soluble organic acids, leading the low pH and inhibits methane-producing microorganisms in food garbage anaerobic reactor.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
264--278
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
- College of Environment and Natural Resources, Can Tho City 900000, Vietnam
autor
- School of Political Science and Economics, Meiji University, Tokyo 101-8301, Japan
autor
- College of Environment and Natural Resources, Can Tho City 900000, Vietnam
Bibliografia
- 1. Abdel-Shafy H., Mansour M. 2018. Solid garbages issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum, 27(4), 1275-1290.
- 2. Adiotomre K., Ukrakpor E.F. 2015. Production of biogas from kitchen garbages and cow dung. International Journal of Innovative Scientific & Engineering Technologies Research, 3(2), 52-64.
- 3. Ali S.S., Al-Tohamy R., Manni A., Luz F.C., Elsamahy T., Sun J. 2019. Enhanced digestion of bio-pretreated sawdust using a novel bacterial consortium: microbial community structure and methane-producing pathways. Fuel, 254, 115604.
- 4. Arikan O., Mulbry W., Lansing S. 2015. Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure. Waste Management, 43, 108-113.
- 5. Balcioglu H., EL-Shimy M., Soyer K. 2017. Chapter 1: Renewable energy - Background. In: M. EL-Shimy (ed.) Economics of variable renewable sources for electric power production. Lambert Academic Publishing / Omniscriptum Gmbh & Company Kg, Germany. 17-34.
- 6. Chae K-J., Jang A., Yim S-K., Kim I. 2008. The effect of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresource technology, 99, 1-6.
- 7. Chiem N.H., Thuan N.C., Can N.D., Cong N.V., Nam T.S., Thanh T.D., Diem H.T., Shiratori Y., Tokihiko F. 2022. Establishment of a model house of community-energy for sustainable agriculture. A case study of Tan Phu Thanh Village, Hau Giang Province in the Vietnamese Mekong Delta. IOP Conf. Series: Earth and Environmental Science 994, 012001.
- 8. Dupade V., Ajit C., Yogesh V. 2015. Temperature, pH and loading rate effect on biogas generation from domestic waste. 2014 International Conference on Advances in Engineering and Technology, ICAET. 1-6.
- 9. Falco S., Kunchumuthu G., Bharate R., Bhilare N., Vishwas P.V. 2020. Portable biogas purification system using NaOH water scrubber, iron wool and silica gel. International Journal of Engineering Research and Technology, 9(3), 235225106.
- 10. Fortuny M., Baeza J.A., Gamisans X., Casas C., Lafuente J., Deshusses M.A., Gabriel D. 2008. Biological sweetening of energy gases mimics in biotrickling filters. Chemosphere. 71(1), 10-17.
- 11. Gerardi M.H. 2003. The microbiology of anaerobic digesters. Wiley InterScience. John Wiley & Sons. Inc.
- 12. Gray R. 2017. The biggest energy challenges facing humanity. [Online]. Available from: https://www.bbc.com/future/article/20170313-the-biggest-energy-challenges-facing-humanity. [Accessed 2 March 2017].
- 13. Hao H.N., Van L.T.T., Luu T.L. 2020. Removal of H2S in biogas using biotrickling filter: Recent development. Process Safety and Environmental Protection, 144, 297-309.
- 14. Holmberg T., Ideland M. 2021. The circular economy of food waste: Transforming waste to energy through ‘make-up’ work. Journal of Material Culture, 26, 135918352110025.
- 15. Iqbal S., Rahaman M.S., Rahman M., Yousuf A. 2014. Anaerobic digestion of kitchen garbages to produce biogas. Procedia Engineering 90, 657-662.
- 16. Izumi T., Higano Y., Matsubara E., Dung D.T., Minh L.T, Chiem N.H. 2015. Effect of appropriate technology introduction to farm households in Vietnam for GHG emission education. Journal of Sustainable Development, 8(8) 147-158.
- 17. Karlsson A., Björn A., Yekta S.S., Svensson B.H. 2014. Improvement of the biogas production process; Explorative project (EP1); Linköping University: Linköping, Sweden.
- 18. Ministry of Natural Resources and Environment – MONRE. 2020. Report on the National State of the Environment for 2019. Dan Tri Publisher, Vietnam, 87 pp (In Vietnamese).
- 19. Monteleone G., De Francesco M., Galli S., Marchetti M., Naticchioni V. 2011. Deep H2S removal from biogas for molten carbonate fuel cell (MCFC) systems. Chemical Engineering Journal, 173 (2), 407-414.
- 20. Mostafa A.A., Elbanna B.A., Elbehiry F., Elbasiouny H. 2020. Biogas production from kitchen garbages: Special focus on kitchen and household garbages in Egypt. In: Negm, A., Shareef, N. (eds) Garbages Management in MENA Regions. Springer Water. 129-147.
- 21. Nam T.S., Chiem N.H., Thao H.V., Khanh H.C., Thuan N.C., Danh D.T., Dung D.T., Izumi T., Maeda K., Cong N.V. 2022. Biogas production from biowaste sources in the Vietnamese Mekong Delta. Can Tho University Journal of Science, Viet Nam, 58, 239-251 (In Vietnamese).
- 22. Nam T.S., Kha L.T.M., Khanh H.V., Thao H.V.T., Ngan N.V.C., Chiem N.H., Viet L.H., Ingvorsen K. 2017. Biogas production capacity of straw and water hyacinth by batch anaerobic incubation with different solid content. Can Tho University Journal of Science, Vietnam, (1), 93-99 (In Vietnamese).
- 23. Ngan N.V.C., Chiem N.H., Viet L.H., Nam T.S., Ut V.N., Ingvorsen K. 2018. Water hyacinth: potential use for biogas production. Vietnam Agricultural Publishing House, 200pp.
- 24. Noi S., Jelínek M., Roubík H. 2022. Small-scale biogas plants in Vietnam: How are affected by policy issues? Ecological Questions, 33, 1-38.
- 25. Pathak A., Patil H., Patil S., Patil V., Khan F. 2022. A review on bio-methane production using kitchen garbages. International Journal of Engineering Research & Technology, 11(4), 29-36.
- 26. Rahman M.M., Vu X.B. 2021. Are energy consumption, population density and exports causing environmental damage in China? Autoregressive distributed lag and vector error correction model approaches. Sustainability, 13, 3749.
- 27. Ramatasa I.M., Akinlabi E.T., Madyna D.M., Huberts R. 2014. Design of the bio-digester for biogas production: A review. Lecture notes in Engineering and Computer Science, Vol. II, WCECS 2014.
- 28. Roser M. 2020. The world’s energy problem. In: Our World Data. [Online]. Available from: https://ourworldindata.org/worlds-energy-problem [Accessed 2 March 2017].
- 29. Sakar S., Yetilmezsoy K., Kocak E. 2009. Anaerobic digestion technology in poultry and livestock waste treatment - A literature review. Waste Management & Research, 27, 3-18.
- 30. Satoh H., Bandara W., Sasakawa M., Nakahara Y., Takahashi M., Okabe S. 2017. Enhancement of organic matter degradation and methane gas production of anaerobic granular sludge by degasification of dissolved hydrogen gas. Bioresource Technology, 244, 768-775.
- 31. Satyam K., Fahd H., Shefali T. 2021. Setup design for the production of methane gas from kitchen waste. Journal of Physics. 3rd International Conference on Computational & Experimental Methods in Mechanical Engineering. 2007, 012016.
- 32. Sharma S., Mishra I., Sharma M., Saini J.S. 1988. Effect of particle size on biogas generation from biomass residues. Biomass, 17, 251-263.
- 33. Søndergaard M. 2009. Redox Potential. in: Encyclopedia of Inland Waters, Elsevier, 852-859.
- 34. Thu C.T.T., Cuong P.H., Hang L.T., Chao N.V., Anh L.X., Trach N.X., Sommer S.G. 2012. Manure management practices on biogas and non-biogas pig farms in developing countries - Using livestock farms in Vietnam as an example. Journal of Cleaner Production, 27, 64-71.
- 35. Thuan N.C., Khanh H.C. 2023. Semi-continuous anaerobic digestion of water hyacinth with different volatile solid levels for biogas production - A mesocosm experiment. Journal of Ecological Engineering. Journal of Ecololical Engineering 24(2), 230-237.
- 36. Thuan N.C., Thanh N.T. 2022. Using food waste for producing compost - Case study in rural area of Hau Giang province. Vietnam Soil Science Journal, 70, 54-58 (In Vietnamese).
- 37. Ürge-Vorsatz D., Gomez-Echeverri L., Clair A., Jones F., Graham P. 2015. Chapter 7: Ensure access to affordable, reliable, sustainable, and modern energy for all. In ICSU, ISSC: Review of Targets for the Sustainable Development Goals: The Science Perspective. International Council for Science, 39-42.
- 38. Vasco-Correa J., Khanal S., Manandhar A., Shah A. 2018. Anaerobic digestion for bioenergy production: Global status, environmental and techno-economic implications, and government policies. Bioresource Technology, 247, 1015-1026.
- 39. Viet L.H., Chiem N.H. 2013. Solid waste management and use. Can Tho University, Vietnam. 495 pp.
- 40. Vikrant D., Shekhar P. 2013. Generation of biogas from kitchen garbages - Experimental analysis. International Journal of Engineering Science Invention, 6(8) 107-115.
- 41. Vongvichiankul C., Deebao J., Khongnakorn W. 2017. Relationship between pH, oxidation reduction potential (ORP) and biogas production in Mesophilic screw anaerobic digester. Energy Procedia, 138, 877-882.
- 42. Wiese J., Konig R. 2007. Monitoring of digesters in biogas plants. [Online]. Available from: https://uk.hach.com/asset-get.download.jsa?id=25593611187 [Accessed 2 March 2017].
- 43. Zamanzadeh M., Hagen L.H., Svensson K., Linjordet R., Horn S.J. 2017. Biogas production from food waste via co-digestion and digestion - Effects on performance and microbial ecology. Sciectific Report, 7, 17664.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-666f5388-4637-4f9b-b042-11d19991950d