PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Analysis of the effects of electromagnetic forces on the relative motion of a charged spacecraft formation flying

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, studying Lorentz’s force has become a possible good means to control the spacecraft to reduce the fuel cost by modulating spacecraft electrostatic charge (magnetic and electric fields). The generation of Lorentz force is finite by the natural magnetic field and the relative velocity of the spacecraft. Therefore, the Lorentz force cannot fully occur from conventional propulsion technologies. Previous studies are concerned with studying Lorentz’s strength in the magnetic field only. In this work, we developed a mathematical model for a new technique establishing a raise in the level of charging in the spacecraft surface that is moving in the Earth’s magnetic field and provided by modulating spacecraft’s electrostatic charge that induces acceleration via the Lorentz force. The acceleration will be used to find the relationship between capacitance and power required to minimize the consumption of control energy used in such cases or to replace the usual control thruster by Lorentz force.
Rocznik
Strony
87--99
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • National Research Institute of Astronomy and Geophysics, Helwan, Cairo, Egypt
  • National Research Institute of Astronomy and Geophysics, Helwan, Cairo, Egypt
  • Faculty of Science Cairo University, Giza, Cairo, Egypt
  • National Research Institute of Astronomy and Geophysics, Helwan, Cairo, Egypt
  • Faculty of Science Cairo University, Giza, Cairo, Egypt
Bibliografia
  • Abdel‐Aziz, Y. A. (2007). Lorentz force effects on the orbit of a charged artificial satellite: a new approach. In AIP Conference Proceedings (Vol. 888, No. 1, pp. 385-391). American Institute of Physics.
  • Abdel-Aziz, Y.A., and Khalil, K.I (2014). Electromagnetic effects on the orbital motion of a charged spacecraft. Research in Astronomy and Astrophysics, 14(5), p. 589.
  • Abdel-Aziz, Y.A., and Shoaib, M., (2015). Attitude dynamics and control of spacecraft using geomagnetic Lorentz force. Research in Astronomy and Astrophysics, 15(1), p. 127.
  • Bakhtiari, M., Daneshjou, K., & Fakoor, M. (2017). Long-term effects of main-body’s obliquity on satellite formation perturbed by third-body gravity in elliptical and inclined orbit. Research in Astronomy and Astrophysics, 17(4), 039.
  • Curtis, H.D., (2013). Orbital mechanics for engineering students. Butterworth-Heinemann.
  • Hill, G.W (1878). Researches in the lunar theory. American Journal of Mathematics, 1(1), pp. 5-26.
  • Huang, X., Yan, Y., Zhou, Y., & Yi, T. (2014). Improved analytical solutions for relative motion of Lorentz spacecraft with application to relative navigation in low Earth orbit. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 228(11), 2138-2154.
  • Huang, X., Yan, Y. and Zhou, Y., (2015). Optimal Lorentz-augmented spacecraft formation flying in elliptic orbits. Acta Astronautica, 111, pp. 37-47.
  • Kechichian, J. A. (1998). Motion in general elliptic orbit with respect to a dragging and precessingcoordinate frame. The Journal of the astronautical sciences, 46(1), 25-45.
  • Melton, R.G., (2000). Time-explicit representation of relative motion between elliptical orbits. Journal of Guidance, Control, and Dynamics, 23(4), pp. 604-610.
  • Peck, M., (2005), August. Prospects and challenges for Lorentz-augmented orbits. In AIAA guidance, navigation, and control conference and exhibit (p. 5995).
  • Peng, C., & Gao, Y. (2017). Formation-Flying Planar Periodic Orbits in the Presence of Intersatellite Lorentz Force. IEEE Transactions on Aerospace and Electronic Systems, 53(3), 1412-1430.
  • Pollock, G.E., (2010). Propellantless spacecraft maneuvers using the electromagnetic Lorentz force (Doctoral dissertation, Purdue University).
  • Pollock, G.E., Gangestad, J.W., and Longuski, J.M., (2011). Analytical solutions for the relative motion of spacecraft subject to Lorentz-force perturbations. Acta Astronautica, 68 (1-2), pp. 204-217.
  • Tsujii, S., Bando, M. and Yamakawa, H., (2012) Spacecraft formation flying dynamics and control using the geomagnetic Lorentz force. Journal of Guidance, Control, and Dynamics, 36(1), pp. 136-148.
  • Ulaby, F.T., (2005) Electromagnetics for engineers (pp. 127-134). Pearson/Prentice Hall.
  • Ulaby, F.T., Ravaioli, U., and Michielssen, E., (2014) Fundamentals of applied electromagnetics. 7 e. Prentice Hall.
  • Vepa, R., (2018) Application of the Nonlinear Tschauner-Hempel Equations to Satellite Relative Position Estimation and Control. The Journal of Navigation, 71(1), pp. 44-64.
  • Vokrouhlicky, D (1989). The geomagnetic effects on the motion of an electrically charged artificial satellite. Celestial Mechanics and Dynamical Astronomy, 46(1), pp. 85-104.
  • WH Clohessy, (1960) Terminal guidance system for satellite rendezvous. Journal of the Aerospace Sciences, 27(9), pp. 653-658.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-666adb9d-fd31-4977-a8da-b184def106ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.