PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical Properties of Polylactide Matrix Composite Reinforced with Long Maize Stalk Fibers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of presented study was to investigate the effect of using long rotation maize stalk fibers as filler on the mechanical and thermomechanical properties of an injection molded biocomposite with a polylactide matrix using different fiber percentages. To evaluate the effect of maize stalk particle reinforcement on the PLA matrix, the mechanical properties of the biocomposites including tensile strength, tensile modulus, relative strain at maximum stress, strain at break, stress at break and Charpy unnotched impact strength were determined. From a mechanical point of view, the best fiber content was at 15% as it caused the least reduction in strain at break, stress at break, and strain at maximum stress relative to the polylactide matrix.
Twórcy
  • Faculty of Mechatronics, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
autor
  • Faculty of Mechatronics, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  • Institute of Materials Science and Engineering, Uniwersytet Kazimierza Wielkiego, Chodkiewicza 30 str., 85-064 Bydgoszcz, Poland
Bibliografia
  • 1. Plastics Facts. 2020. An analysis of European plastics production, demand and waste data. Available: https://www.plasticseurope.org/application/ files/5716/0752/4286/AF_Plastics_the_factsWEB-2020-ING_FINAL.pdf [date accessed: 10. Feb 2021].
  • 2. Plastics Facts 2019 An analysis of European plastics production, demand and waste data. Available: https://www.plasticseurope.org/application/ files/9715/7129/9584/FINAL_web_version_Plastics_the_facts2019_14102019.pdf [date accessed: 12. Feb 2021].
  • 3. Rabnawaz M., Wyman I., Auras R., Cheng S. A roadmap towards green packaging: the current status and future outlook for polyesters in the packaging industry. Green Chemistry. 2017; 19(20): 4737–4753.
  • 4. The New Plastics Economy: Rethinking the future of plastics. Available: https://www.ellenmacarthurfoundation.org/news/the-new-plastics-economy-rethinking-the-future-of-plastics-infographics [date accessed: 14. Feb 2021].
  • 5. Zhu Y., Romain C., Williams C.K. Sustainable polymers from renewable resources. Nature. 2016: 540(7633): 354–362.
  • 6. Dauvergne P. Why is the global governance of plastic failing the oceans?. Global Environmental Change. 2018; 51: 22–31.
  • 7. Grabowska B. Polymer material biodegradation. Archives of Foundry Engineering. 2010; 10(2): 57–60.
  • 8. Kale K., Deshmukh A.G., Dudhare M.S., Patil V.B. Microbial degradation of plastic: a review. Journal Of Biochemical Technology. 2015; 6(2): 952–961.
  • 9. Leja K., Lewandowicz G. Polymer Biodegradation and Biodegradable Polymers – a Review. Polish Journal of Environmental Studies. 2010; 19(2): 255–266.
  • 10. Lambert S., Wagner M. Environmental performance of bio-based and biodegradable plastics: the road Ahead. Chemical Society Reviews. 2017; 46(22): 6855–6871.
  • 11. Haider T.P., Völker C., Kramm J., Landfester K., Wurm F.R. Plastics of the future? The impact of biodegradable polymers on the environment and on socjety. Angewandte Chemie. 2018; 58(1): 50–62.
  • 12. Frącz W.J., Jankowski G., Bąk Ł. The Optimization of PHBV-hemp Fiber Biocomposite Manufacturing Process on the Selected Example. Advances in Science and Technology Research Journal. 2021; 15(2): 127–137
  • 13. Market data bioplastics plastics. Available: https://www.european-bioplastics.org [date accessed: 03. Mar 2021]
  • 14. Żakowska H. Bioplastics for food packaging production. Przemysł Spożywczy. 2018; 69(7): 26–30.
  • 15. Gołębiewski J., Gibas E., Malinowski R. Selected biodegradable polymers preparation, properties, applications. Polimery. 2018; 53(11–12): 799–807.
  • 16. Mallet B., Lamnawar K., Maazouz A. Improvement of blown film extrusion of poly(lactic acid): structure-processing-properties relationships. Polymer Engineering & Science. 2014; 54(4): 840–857.
  • 17. Aniśko J., Barczewski M. Polylactide: from Synthesis and Modification to Final Properties. Advances in Science and Technology Research Journal. 2021; 15(3): 9–29.
  • 18. Frone A.N., Berlioz S., Chailan J.F., Panaitescu D.M., Donescu D. Cellulose fiber-reinforced polylactic acid. Polymer Composites. 2011; 32(6): 976–985.
  • 19. Auras R., Harte B., Selke S. An Overview of Polylactides as Packaging Materials. Macromolecular Bioscience. 2004; 4(9): 835–864.
  • 20. Van Velzen E.T., Jansen M., Brouwer M.T., Feil A., Molenveld K., Pretz T. Efficiency of recycling post-consumer plastic packages. In 32 International Conference of the Polymer Processing Society, Lyon, France 2017.
  • 21. Lasprilla A.J.R., Martinez G.A.R., Lunelli B.H., Jardini A.L., Filho R.M. Polylactic acid synthesis for application in biomedical devices a review. Biotechnology Advances. 2012; 30(1): 321–328.
  • 22. Kaisangsri N., Kerdchoechuen O., Laohakunjit N. Biodegradable foam tray from cassava starch blended with natural fiber and chitosan. Industrial Crops and Products. 2012; 37(1): 542–546.
  • 23. Nyambo C., Mohanty A.K., Misra M. Polylactidebased renewable green composites from agricultural residues and their hybrids Biomacromolecules. 2010; 11(6): 1654–1660.
  • 24. Dicker M.P., Duckworth P.F., Baker A.B., Francois G., Hazzard M.K., Weaver P.M. Green composites: a review of material attributes and complementary applications. Composites Part A: Applied Science and Manufacturing. 2014; 56(1): 280–289.
  • 25. Ku H., Wang H., Pattarachaiyakoop N., Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering. 2011; 42(11): 856–873.
  • 26. Moraczewski K., Malinowski R., Łączny D., Macko M. Surface modification of maize stem with polydopamine and tannic acid coatings. Surfaces and Interfaces. 2021; 26: 1013–1019.
  • 27. Luo H., Xiong G., Ma Ch., Chang P., Yao F., Zhu Y., Zhang Ch., Wan Y. Mechanical and thermomechanical behaviors of sizingtreated corn fiber/ polylactide composites. Polymer Testing. 2014; 39(10): 45–52.
  • 28. Luo H., Zhang Ch., Xiong G. Effects of alkali and alkali/silane treatments of corn fibers on mechanical and thermal properties of its composites with polylactic acid. Polymer composites. 2015; 37(12): 3499–3507.
  • 29. Zhang P., Wang B., Gao D., Wen L. The Study on the Mechanical Properties of Poly(lactic acid)/ Straw Fiber Composites. Applied Mechanics and Materials. 2012; 200(1): 312–315.
  • 30. Faludi G., Dora G., Imre B., Renner K., Móczó J., Pukánszky B. PLA/lignocellulosic fiber composites: Particle characteristics, interfacial adhesion, and failure mechanism Journal of Applied Polymer Science. 2013; 131(4).
  • 31. Kumar A., Jyske T., Möttönen V. Properties of Injection Molded Biocomposites Reinforced with Wood Particles of Short-Rotation Aspen and Willow. Polymers. 2020; 12(2).
  • 32. Luo H., Yang Z., Yao F., Li W., Wan Y. Improved properties of corn fiber-reinforced polylactide composites by incorporating silica nanoparticles at interfaces. Polymers and Polymer Composites. 2020; 28(3): 170–179.
  • 33. Zhang K., He Y., Zhang H., Li H. Research on mechanical properties of corn stalk. AIP Conference Proceedings. 2017; 1820(1).
  • 34. Rodríguez M., Rodríguez A., Bayer J.R., Vilaseca F., Gironès J., Mutjé P. Determination of corn stalk fibers’ strength through modeling of the mechanical properties of its composites. Bioresources. 2010; 5(4): 2535–2546.
  • 35. Shibata M., Ozawa K., Teramoto N., Yosomiya R. Biocomposites Made from Short Abaca Fiber and Biodegradable Polyesters. Macromolecular Materials and Engineering. 2003; 288(1): 35–43.
  • 36. Tarrés Q., Hernández-Díaz D., Ardanuy M. Interface Strength and Fiber Content Influence on Corn Stover Fibers Reinforced Bio-Polyethylene Composites Stiffness. Polymers. 2021; 13(5).
  • 37. Tarrés Q., Ardanuy M. Evolution of Interfacial Shear Strength and Mean Intrinsic Single Strength in Biobased Composites from Bio-Polyethylene and Thermo-Mechanical Pulp-Corn Stover Fibers. Polymers. 2020; 12(6).
  • 38. Keener T.J., Stuart R.K., Brown T.K. Maleated coupling agents for natural fibre composites. Composites Part A: Applied Science and Manufacturing. 2004; 35(3): 357–362.
  • 39. Lu J.Z., Wu Q., McNabb H.S. Chemical coupling in wood fiber and polymer composites: A review of coupling agents and treatments. Wood Fiber Science. 2000; 32(1): 88–104.
  • 40. Lu J.Z., Wu Q., Negulescu I.I. The influence of maleation on polymer adsorption and fixation, wood surface wettability, and interfacial bonding strength in wood-PVC composites. Wood Fiber Science. 2002; 34(1): 434–459,
  • 41. Sohn J.S., Cha S.W. Effect of chemical modification on mechanical properties of wood-plastic composite injection-molded parts. Polymers. 2018; 10(12).
  • 42. Quiles-Carrillo L., Montanes N., Sammon C., Balart R., Torres-Giner S. Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products. 2018; 111(1): 878–888.
  • 43. Aguero A., Quiles-Carrillo L., Jorda-Vilaplana A., Fenollar O., Montanes N. Effect of different compatibilizers on environmentally friendly composites from poly(lactic acid) and diatomaceous earth. Polymer. 2019; 68(5): 893–903.
  • 44. Saba N., Jawaid M., Alothman O. Y., Paridah M. T. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Construction and Building Materials. 2016; 106(1): 149–159.
  • 45. Arputhabalan J., Palanikumar K. Tensile properties of natural fiber reinforced polymers: An overview. Applied Mechanics and Materials. 2015; 766(1): 133–139.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6669789e-3b00-4e8c-a195-27a380861158
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.