PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Modelling of Fish Passage with Turning Pools

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An assessment of operating conditions in a baffled fish passage with pool dimensions of 2:2 3:0 m, and 180 horizontally turning pools, was carried out using numerical computations and a site survey of water flow velocity distribution. Velocity was measured with a PMS electromagnetic flowmeter and a hydrometric current meter in representative cross-sections of the fish passage in the pool centres and in the baffle barrier cross-section area. Numerical computations were also performed for two alternative baffle locations in the fishway. One reflected the actual conditions, and the other was an alternative arrangement designed to improve hydraulic conditions for fish migration. The numerical model used the Large Eddy Simulation (LES) method, which makes it possible to detect large vortexes. The study pays close attention to the velocity field analysis as well as the distribution and sizes of vortexes in the turning pool of the culvert. The results of numerical computations and the site survey show high consistency, and the proposed baffle placement modification significantly improves flow conditions, especially in the entry section of the passage.
Twórcy
autor
  • Wrocław University of Science and Technology, Faculty of Civil Engineering
Bibliografia
  • Alvarez-Vazquez L. J., Martınez A., Vazquez-Mendez M. E., Vilar M. A. (2008) An optimal shape problem related to the realistic design of river fishways, Ecological Engineering, 32, 293–300.
  • Baek K. O., Kim Y. D. (2014) A case study for optimal position of fishway at low-head obstructions in tributaries of Han River in Korea, Ecological Engineering, 64, 222–230.
  • Barton A. F., Keller R. J., Katopodis C. (2009) Verification of a numerical model for the prediction of low slope vertical slot fishway hydraulics, Australian Journal of Water Resources, 13, 53–60.
  • Bombač M., Novak G., Rodič P., Četina M. (2014) Numerical and physical model study of a vertical slot fishway Journal of Hydrology and Hydromechanics, 62, 150–159.
  • Cea L., Pena L., Puertas J., Vazquez-Cendon M., Pena E., (2007) Application of several depth-averaged turbulence models to simulate flow in vertical slot fishways, Journal of Hydraulic Engineering, 133(2), 160–172.
  • Clay C. H. (1995) Design of Fishways and other Fish Facilities, 2nd edition, CRC Press, Inc. Boca Raton, Florida, USA.
  • Delavan S. K., Sood S., Pérez-Fuentetaja A., Hannes A. R. (2017) Anthropogenic turbulence and velocity barriers for upstream swimming fish: A field study on emerald shiners (Notropis atherinoides) in the Upper Niagara River, Ecological Engineering, 101, 91–106.
  • FAO/DVWK (2002), Fish passes – design, dimensions and monitoring, Food and Agriculture Organization of the United Nations, Rome.
  • Feurich R., Boubée J., Olsen N. R. B. (2012) Improvement of fish passage in culverts using CFD, Ecological Engineering, 47, 1–8.
  • Gatski T. B., Hussaini M. Y., Lumley J. L. (1998) Simulation and Modeling of Turbulent Flows, Oxford University Press, Inc. New York, USA.
  • Goettel M. T., Atkinson J. F., Bennett S. J. (2015) Behavior of western blacknose dace in a turbulence modified flow field, Ecological Engineering, 74, 230–240.
  • Guiny E., Ervine D. A., Armstrong J. D. (2005) Hydraulic and Biological Aspects of Fish Passes for Atlantic Salmon, Journal of Hydraulic Engineering, 131, 542–553.
  • Herrera-Granados O. (2018) Turbulence Flow Modeling of One-Sharp-Groyne Field, [in:] Kalinowska M., Mrokowska M., Rowinski P. (eds), Free Surface Flows and Transport Processes, GeoPlanet: Earth and Planetary Sciences. Springer, Cham, 207–218.
  • Khodier M. A., Tullis B. P. (2013) Fish Passage Behavior for Severe Hydraulic Conditions in Baffled Culverts, Journal of Hydraulic Engineering, 140 (3), 322–327.
  • Katopodis C., Williams J. G. (2012) The development of fish passage research in a historical context, Ecological Engineering, 48, 8–18.
  • Kirk M. A., Caudill C. C., Tonina D., Symy J. C. (2016) Effects ofwater velocity, turbulence and obstacle length on the swimming capabilities of adult Pacific lamprey, Fisheries Management and Ecology, 23, 356–366.
  • Lee H., Lin C.-L.,Weber L. J. (2008) Application of a Nonhydrostatic Model to Flow in a Free Surface Fish Passage Facility, Journal of Hydraulic Engineering, 134, 993–999.
  • Liao J. C. (2007) A review of fish swimming mechanics and behaviour in altered flows, Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 1973–1993.
  • Lindberg D. E., Leonardsson K., Andersson A. G., Lundstr¨om T. S., Lundqvist H. (2013) Methods for locating the proper position of a planned fishway entrance near a hydropower tailrace, Limnologica, 43, 339–347.
  • Lupandin A. I. (2005) Effect of Flow Turbulence on Swimming Speed of Fish, Biology Bulletin, 32, 461–466.
  • Mao X., Fu J-J., Tuo Y-C., An R-D., Li J. (2012) Influence of structure on hydraulic characteristics of T shape fishway, Journal of Hydrodynamics, 24, 684–691.
  • Marriner B. A., Baki A. B. M., Zhu D. Z., Thiem J. D., Cooke S. J., Katopodis C. (2014) Field and numerical assessment of turning pool hydraulics in a vertical slot fishway, Ecological Engineering, 63, 88–101.
  • Mortula M. M. (2011) Modeling of a novel fish passage-way using coupled spatially varied flow, Journal of the Franklin Institute, 348, 1627–1637.
  • Nikora V. I., Aberle J., Biggs B. J. F., Jowett I. G., Sykes J. R. E. (2003) Effects of fish size, time-to-fatigue and turbulence on swimming performance: a case study of Galaxias maculatus, Journal of Fish Biology, 63, 1365–1382.
  • Odeh M., Noreika J. F., Haro A., Maynard A., Castro-Santos T., Cada G. F. (2002) Evaluation of the effects of turbulence on the behavior of migratory fish, Final Report 2002. Report to Bonneville Power Administration, Contract No. 00000022, Project No. 200005700.
  • Pavlov D. S., Lupandin A. I., Skorobogatov M. A. (2000) The effects of flow turbulence on the behaviour and distribution of fish, Journal of Ichthyology, 40, Suppl. 2, 232–261.
  • Richmond M. C., Deng Z., Guensch G. R., Tritico H., Pearson W. H. (2007) Mean flow and turbulence characteristics of a full-scale spiral corrugated culvert with implications for fish passage, Ecological Engineering, 30, 333–340.
  • Silva A. T., Katopodis C., Santos J. M., Ferreira M. T., Pinheiro A. N. (2012) Cyprinid swimming behaviour in response to turbulent flow, Ecological Engineering, 44, 314–328.
  • Tritico H. M., Cotel A. J. (2010) The effects of turbulent eddies on the stability and critical swimming speed of creek chub (Semotilus atromaculatus), The Journal of Experimental Biology, 213, 2284–2293.
  • Yasuda Y., Ohtsu I., Takahashi M. (2004) New portable fishway design for existing trapezoidal weirs, Journal of Environmental Engineering and Science, 3, 391–401.
  • Wyrębek M. (2013) Baffle fishways as an element of restoration of the continuity of the ecological corridor in strongly changed rivers (in Polish), Infrastruktura i ekologia terenów wiejskich, 3/I, Polska Akademia Nauk o/Kraków, 61–71.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6668d28d-e651-418d-92ca-9c974e72eb39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.