PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biological translocation of parathion methyl by Pilobolus sp. In corn microsystems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Parathion methyl is a widely used organophosphorus pesticide (OPs). OPs in agroecosystems cause severe health and environmental effects. In this study, the Pilobolus inoculum’s ability to remove parathion methyl in microsystems corn crop was evaluated at the laboratory level. Agricultural soils containing Pilobolus inoculum were exposed to 50 μg/dm3 of parathion methyl. The results showed that Pilobolus inoculum can eliminate parathion methyl in 80% of microsystems, and positively influences 20% of the physiological processes of corn plants. This research into the field of myco-remediation widens the use of little-studied fungal species such as Pilobolus to remove pesticides.
Rocznik
Strony
5--14
Opis fizyczny
Bibliogr. 25 poz., rys.,
Twórcy
  • Centro de Investigación en Ciencias Biológicas Aplicadas, Universidad Autónoma del Estado de México, 50200, Toluca, México
  • Centro de Investigación en Ciencias Biológicas Aplicadas, Universidad Autónoma del Estado de México, 50200, Toluca, México
  • Instituto Interamericano en Tecnología y Ciencias del Agua. Universidad Autónoma del Estado de México, 50200, Toluca, México
  • Centro Conjunto de Investigación en Química Sustentable, Universidad Autónoma del Estado de México, 50200, Toluca, México
  • Centro Conjunto de Investigación en Química Sustentable, Universidad Autónoma del Estado de México, 50200, Toluca, México
  • Centro Conjunto de Investigación en Química Sustentable, Universidad Autónoma del Estado de México, 50200, Toluca, México
  • Facultad de Química. Universidad Autónoma del Estado de México, 50120, Toluca, México.
  • Centro de Investigación en Ciencias Biológicas Aplicadas, Universidad Autónoma del Estado de México, 50200, Toluca, México
  • Centro de Investigación en Ciencias Biológicas Aplicadas, Universidad Autónoma del Estado de México, 50200, Toluca, México
Bibliografia
  • [1] XUE X., WEI Q., WU D., LI H., ZHANG Y., FENG R., DU B., Determination of methyl parathion by a molecularly imprinted sensor based on nitrogen doped graphene sheets, Electrochim. Acta, 2014, 116, 366–371. DOI: 10.1016/j.electacta.2013.11.075.
  • [2] XU S., GUO C., LI Y., YU Z., WEI C., TANG Y., Parathion methyl imprinted polymer nanoshell coated on the magnetic nanocore for selective recognition and fast adsorption and separation in soils, J. Hazard. Mater., 2014, 264, 34–41. DOI: 10.1016/j.jhazmat.2013.10.060.
  • [3] ZHENG Y., LAN W., QIAO C., MULCHANDANI A., CHEN W., Decontamination of vegetables sprayed with organophosphate pesticides by organophosphorus hydrolase and carboxylesterase (B1), Appl. Biochem. Biotechnol., 2007, 136, 233–241.
  • [4] YANG C., CAI N., DONG M., JIANG H., LI J., QIAO C., MULCHANDANI A., CHEN W., Surface display of MPH on Pseudomonas putida JS444 using ice nucleation protein and its application in detoxification of organophosphates, Biotechnol. Bioeng., 2008, 99, 30–37. DOI: 10.1002/bit.21535.
  • [5] DIAGNE M., OTURAN N. OTURAN M.A., Removal of parathion methyl from water by electrochemically generated Fenton’s reagent, Chemosphere, 2007, 66, 841–848. DOI: 10.1016/j.chemosphere.2006. 06.033.
  • [6] EDWARDS F.L., TCHOUNWOU P.B., Environmental toxicology and health effects associated with para-thion methyl exposure a scientific review, Int. J. Environ. Res. Public Health, 2005, 2, 430–441. DOI: 10.3390/ijerph2005030007.
  • [7] SUTHERLAND T., HORNE I., WEIR K., COPPIN C., WILLIAMS M., SELLECK M., RUSSELL R., OAKESHOTT J., Enzymatic bioremediation: from enzyme discovery to applications, Clin. Exp. Pharmacol. Physiol., 2004, 31, 817–821. DOI: 10.1111/j.1440-1681.2004.04088.x.
  • [8] QIU X.H., BAI W.Q., ZHONG Q.Z., LI M., HE F.Q., LI B.T., Isolation and characterization of a bacterial strain of the genus Ochrobactrum with parathion methyl mineralizing activity, J. Appl. Microbiol., 2006, 101, 986–994. DOI: 10.1111/j.1365-2672.2006.03016.x.
  • [9] LIU F.Y., HONG M.Z., LIU D.M., LI Y.W., SHOU P.S., YAN H., SHI G.Q., Biodegradation of parathion methyl by Acinetobacter radioresistens USTB-04, J. Environ. Sci., 2007, 19, 1257–1260. DOI: 10.1016 /S1001-0742(07)60205-8.
  • [10] PINO N., PEÑUELA G., Simultaneous degradation of the pesticides parathion methyl and chlorpyrifos by an isolated bacterial consortium from a contaminated site, Int. Biodet. Biodegrad., 2011, 65, 827–831. DOI: 10.1016/j.ibiod.2011.06.001.
  • [11] ALI M., NAQVI T.A., KANWAL M., RASHEED F., HAMEED A., AHMED S., Detection of the organophosphate degrading gene opd A in the newly isolated bacterial strain Bacillus pumilus W1, Ann. Microbiol., 2012, 62, 233–239.
  • [12] FOOS K.M., SHEEHAN K.B., Molecular identification of Pilobolus species from Yellowstone National Park, Mycol., 2011, 103, 1208–1215. DOI: 10.3852/11-107.
  • [13] MANZANILLA J., BARCELÓ M., REYES O., Kinetics of hydrolysis of methyl parathion in aqueous media, Rev. Int. Cont. Amb., 1997, 13, 35–40 (in Spanish).
  • [14] TEJOCOTE-PÉREZ M., BALDERAS-HERNÁNDEZ P., BARRERA-DÍAZ C.E., Ectomycorrhization of agricultural forest soil: Bioassays with Pinus patula and Amanita muscaria with soil from the Nevado de Toluca Park, State of Mexico, EAE (Ed.), Spain, 2012, 6–80 (in Spanish).
  • [15] ALVARENGA N., BIROLLI W.G., SELEGHIM M.H.R., PORTO A.L.M., Biodegradation of parathion methyl by whole cells of marine-derived fungi Aspergillus sydowii and Penicillium decaturense, Chemo-sphere, 2014, 117, 47–52. DOI: 10.1016/j.chemosphere.2014.05.069.
  • [16] ALMEIDA D.V., VAZ B., FIGUEIREDO M.A., VARELA J.A.S., MARINS L.F., Fluorescent transgenic zebrafish as a biosensor for growth-related effects of parathion methyl, Aquat. Toxicol., 2014, 152, 147–151. DOI: 10.1016/j.aquatox.2014.04.001.
  • [17] HALAIMI F.Z., KELLALI Y., COUDERCHET M., SEMSARI S., Comparison of biosorption and phytoremediation of cadmium and parathion methyl, a case-study with live Lemna gibba and Lemna gibba powder, Ecotox. Environ. Safe., 2014, 105, 112–120. DOI: 10.1016/j.ecoenv.2014.02.002.
  • [18] NAIR R., SINGH V., SALIAN S.R., KALTHUR S.G, D’SOUZA A.S., SHETTY P.K., MUTALIK S., KALTHUR G., ADIGA S.K., Parathion methyl inhibits the nuclear maturation, decreases the cytoplasmic quality in oo-cytes and alters the developmental potential of embryos of Swiss albino mice, Toxicol. Appl. Pharm., 2010, 279, 338–350. DOI: 10.1016/j.taap.2014.07.004.
  • [19] WANG L., CHI X., ZHANG J., SUN D., ZHOU N., Bioaugmentation of a parathion methyl contaminated soil with Pseudomonas sp. strain WBC-3, Int. Biodet. Biodegr., 2014, 87, 116–121. DOI: 10.1016/j.ibiod. 2013.11.008.
  • [20] WANG X., YANG Y., DONG J., BEI F., AI S., Lanthanum-functionalized gold nanoparticles for coordination–bonding recognition and colorimetric detection of parathion methyl with high sensitivity, Sensor. Act. B Chem., 2014, 204, 119–124. DOI: 10.1016/j.snb.2014.07.093.
  • [21] XUE X., WEI Q., WU D., LI H., ZHANG Y., FENG R., DU B., Determination of parathion methyl by a molecularly imprinted sensor based on nitrogen doped graphene sheets, Electrochim. Acta, 2014, 116, 366–371. DOI: 10.1016/j.electacta.2013.11.075.
  • [22] YAN X., LI H., YAN Y., SU X., Selective detection of parathion methyl based on near-infrared CuInS2 quantum dots, Food Chem., 2015, 173, 179–184. DOI: 10.1016/j.foodchem.2014.09.152.
  • [23] YUAN Z., YAO J., LIU H., HAN J., TREBŠE P., Photodegradation of organophosphorus pesticides in honey medium, Ecotox. Environ. Safe., 2014, 108, 84–88. DOI: 10.1016/j.ecoenv.2014.06.032.
  • [24] ZHAO G., HUANG Q., RONG X., CAI P., LIANG W., DAI K., Biodegradation of parathion methyl in the presence of goethite: The effect of Pseudomonas sp. Z1 adhesion, Inter. Biodeter. Biodegr., 2014, 86, 294–299. DOI: 10.1016/j.ibiod.2013.10.001.
  • [25] VÁZQUEZ-ALARCON A., JUSTIN-CAJUSTE L., SIEBE-GRABACH C., ALCÁNTAR-GONZÁLEZ G., DE LA ISLA DE BAUER M.L., Cadmium, nickel and lead concentrations in wastewater, soil, and crops in the Mezquital Valley, Hidalgo, México, Agrocien., 2004, 35 (3), 267–274.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66608b36-3cc9-49a5-ac41-b9177bdaf97d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.