Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Selection of base functions for electrographic signal approximation in the detection of epileptic zone
Języki publikacji
Abstrakty
Celem badań opisanych jest dobór funkcji bazowych, które pozwolą na dokładne opisanie sygnałów elektrokortykograficznych (ECoG) z zachowaniem ich właściwości diagnostycznych. Sygnały ECoG są powszechnie wykorzystywane do wskazania miejsca obszaru padaczkorodnego mózgu. Do doboru najlepszej rodziny falek w charakterze funkcji bazowych zastosowano algorytm MP (ang. Matching Pursuit). Przedstawiono przykład, w jaki sposób z wykorzystaniem analizy falkowej można wykryć zapisy patologiczne w sygnale ECoG.
The purpose of this research is a selection of base functions, which allow to accurately describe the electrocortical signals (ECoG), while maintaining their diagnostic properties. ECoG signals are commonly used to indicate the epileptogenic zone in the brain. The Matching Pursuit algorithm was used to select the best wavelet family as a base function. An example of using wavelet analysis to detect pathological records in ECoG signal, is demonstrated.
Wydawca
Rocznik
Tom
Strony
253--260
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- Politechnika Warszawska, Wydział Elektryczny, Instytut Elektrotechniki Teoretycznej i Systemów Informacyjno-Pomiarowych, 00-662 Warszawa, ul. Koszykowa 75
autor
- Politechnika Warszawska, Wydział Elektryczny, Instytut Elektrotechniki Teoretycznej i Systemów Informacyjno-Pomiarowych, 00-662 Warszawa, ul. Koszykowa 75
autor
- Politechnika Warszawska, Wydział Elektryczny, Instytut Elektrotechniki Teoretycznej i Systemów Informacyjno-Pomiarowych, 00-662 Warszawa, ul. Koszykowa 75
autor
- Warszawski Uniwersytet Medyczny, Katedra i Klinika Neurochirurgii, 02-097 Warszawa, ul. Banacha 1A
Bibliografia
- [1] J.A. Messenheimer: Epilepsy: Frequency, causes and consequences, Journal of Epilepsy, vol. 4(4), 1991, s. 246.
- [2] M. Bozek-Juzmicki, D. Colella, G.M. Jacyna: Feature-based epileptic seizure detection and prediction from ECoG recordings, Proceedings of IEEE International Symposium on Time-Frequency and Time-Scale Analysis, 1994, s. 564–567.
- [3] N.J. Hill, D. Gupta, P. Brunner, A. Gunduz, M.A, Adamo, A. Ritacco, G. Schalk: Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping, Journal of Visualized Experiments, no. 64, 2012.
- [4] J. Gotman: Automatic detection of seizures and spikes, Journal of Clinical Neurophysiology, vol. 16, 1999, s. 130–140.
- [5] N.S. McGrogan, L. Tarassenko: Neural Network Detection of Epileptic Seizures in the Electroencephalogram, 1999.
- [6] R. Harner: Automatic EEG Spike Detection, Clinical EEG and Neuroscience, vol. 40(4), 2009, s. 262–270.
- [7] M. Dümpelmann, C.E. Elger: Automatic detection of epileptiform spikes in the electrocorticogram: a comparison of two algorithms, Seizure. vol. 7(2), 1998, s. 145–152.
- [8] S.B. Wilson, C.A. Turner, R.G. Emerson, M.L. Scheuer: Spike detection II: automatic, perception-based detection and clustering, Clinical Neurophysiology, vol. 110(3), 1999, s. 404–411.
- [9] W.R. Webber, B. Litt, K. Wilson, R.P. Lesser: Practical Detection of Epileptiform Discharges (EDs) in the EEG Using an Artificial Neural Network: A Comparison of Raw and Parameterized EEG Data, Electroencephalography and Clinical Neurophysiology vol. 91(3), 1994, s. 194–204.
- [10] J. Fan, C. Shao, Y. Ouyang, J. Wang, S. Li, Z. Wang: Automatic Seizure Detection Based on Support Vector Machines with Genetic Algorithms, Simulated Evolution and Learning, 2006, s. 845–852.
- [11] T.P. Exarchos, A.T. Tzallas, D.I. Fotiadis, S. Konitsiotis, S. Giannopoulos: EEG Transient Event Detection and Classification Using Association Rules, IEEE Transactions on Information Technology in Biomedicine, vol. 10(3), 2006 s. 451–457.
- [12] V. Srinivasan, C. Eswaran, N. Sriraam: Artificial Neural Network Based Epileptic Detection Using Time-Domain and Frequency-Domain Features, Journal of Medical Systems, vol. 29(6), 2005, s. 647–660.
- [13] K. Polat, S. Güneş: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform, Applied Mathematics and Computation, vol. 187(2), 2007, s. 1017–1026.
- [14] E.D. Übeyli, İ. Güler: Features extracted by eigenvector methods for detecting variability of EEG signals, Pattern Recognition Letters, vol. 28(5), 2007, s. 592–603.
- [15] L.D. Iasemidis, J.C. Sackellares: REVIEW: Chaos Theory and Epilepsy, The Neuroscientist, vol. 2(2), 1996, s. 118–126.
- [16] N. Kannathal, U.R. Acharya, C.M. Lim, P.K. Sadasivan: Characterization of EEG-A comparative study, Computer Methods and Programs in Biomedicine, vol. 80(1), 2005 s. 17–23.
- [17] D.E. Lerner: Monitoring changing dynamics with correlation integrals: Case study of an epileptic seizure, Physica D: Nonlinear Phenomena, vol. 97(4), 1996, s. 563–576.
- [18] V. Srinivasan, C. Eswaran, and N. Sriraam: Approximate entropy-based epileptic EEG detection using artificial neural networks, IEEE Transactions on Information Technology in Biomedicine, vol. 11(3), 2007, s. 288–295.
- [19] S. Osowski, B. Swiderski, A. Cichocki, A. Rysz, Epileptic seizure characterization by Lyapunov exponent of EEG signal,
- COMPEL, vol. 26(5), 2007, s. 1276–1287.
- [20] M. Schwab, K. Schmidt, H. Witte, R.M. Abrams: Investigation of Nonlinear ECoG Changes during Spontaneous Sleep
- State Changes and Cortical Arousal in Fetal Sheep, Cereb Cortex, vol. 10(2), 2000, s. 142–148.
- [21] C.Y. Guo, J.P. Li: Development and future of wavelet analysis, 10th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), 2013, s. 335–338.
- [22] S.G. Mallat, Z. Zhang: Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, vol. 41(12), 1993, s. 3397–3415.
- [23] P.J. Durka, K.J. Blinowska: Analysis of EEG transients by means of matching pursuit, Annals of Biomedical Engineering, vol. 23(5), 1995, s. 608–611.
- [24] Y. Wu, H. Zhang, H. Wang, Y. Lu: The sparse decomposition and compression of ECG and EEG based on matching pursuits, 3rd International Conference on Biomedical Engineering and Informatics, vol. 3, 2010, s. 1094–1097.
- [25] A. Picot, H. Whitmore, F. Chapotot: Automated detection of sleep EEG slow waves based on matching pursuit using a restricted dictionary, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, s. 4824–4827.
- [26] A. Picot, H. Whitmore, F. Chapotot, Detection of Cortical Slow Waves in the Sleep EEG Using a Modified Matching Pursuit Method With a Restricted Dictionary, IEEE Transactions on Biomedical Engineering, vol. 59(10), 2012, s. 2808–2817
- [27] C.A. Loza, J.C. Principe: Transient model of EEG using Gini Index-based matching pursuit, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, s. 724–728.
- [28] M. Kołodziej, A. Majkowski, R.J. Rak: Simplified Matching Pursuit as a new method for SSVEP recognition, 39th International Conference on Telecommunications and Signal Processing (TSP), 2016, s. 346–349.
- [29] S. Ravindran, R. Cole: Low complexity algorithms for heart rate and epileptic seizure detection, 2nd International Symposium on Applied Sciences in Biomedical and Communication Technologies, 2009, s. 1–5.
- [30] Z. Xuan, Y. Zhenghua, Y. Songyu: Method for detecting all-zero DCT coefficients ahead of discrete cosine transformation and quantisation, Electronics Letters, vol. 34(19), 1998, s. 1839–1840.
- [31] N. Agarwal: Computationally efficient ABS scheme for sinusoidal transform coding of speech, Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology, 2003, s. 737–740.
- [32] A. Majkowski, M. Kołodziej, R. Rak, Joint Time-Frequency And Wavelet Analysis - An Introduction, Metrology and Measurement Systems, vol. 21(4), 2014, s. 741–758.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-665f680b-4ba0-471c-8751-4016b7f3683b