PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fracture prediction of high‑strength steel sheet during in‑plane compression‑shear forming under negative stress triaxiality

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Predicting fracture failure of metals at negative stress triaxiality has been challenging, particularly for the in-plane compression-shear fracture failure of sheet metals. In this study, the in-plane compression-shear experiment and finite element stress analysis of a high-strength TRIP800 steel sheet were conducted. The fracture behavior of the TRIP800 sheet under different stress states was analyzed. The results showed that the stress triaxiality of the fracture zone was all less than 0, and the fracture surface was mainly characterized by micro-shear band defects. The decrease in stress triaxiality tends to accelerate the closure of voids, which is significantly different from the micro-voids-dominated fracture behavior at positive stress triaxiality. This indicates including more stress states in the negative stress triaxiality range when calibrating the Modified Mohr-Coulomb (MMC) fracture criterion helps improve the prediction accuracy of compression-shear fracture. Moreover, it was found that the in-plane compression-shear fracture could initiate at a stress triaxiality of - 0.48. This finding extends the cutoff value of stress triaxiality for ductile fracture and further expands the research scope for high-strength steel fracture.
Rocznik
Strony
art. no. e60, 2024
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Beijing Key Laboratory of Lightweight Metal Forming, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Beijing Key Laboratory of Lightweight Metal Forming, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
autor
  • Aerospace CH UAV Co., Ltd, Beijing 100074, China
autor
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Beijing Key Laboratory of Lightweight Metal Forming, Beijing 100083, China
Bibliografia
  • 1. Lou YS, Yoon JW, Huh H. Correlation of the maximum shear stress with micro-mechanisms of ductile fracture for metals with high strength-to-weight ratio. Int J Mech Sci. 2018;146:583-601.
  • 2. Siad L, Fekih AW. Ductile failure under combined tension and shear: simulation using a Gurson-Type porous plasticity model. Int J Appl Mech. 2022;14(7):2250056.
  • 3. Pathak N, Butcher C, Adrien J. Micromechanical modelling of edge failure in 800 MPa advanced high strength steels. J Mech Phys Solids. 2020;137: 103855.
  • 4. Habibi N, Zarei-Hanzaki A, Abedi HR. An investigation into the fracture mechanisms of twinning-induced-plasticity steel sheets under various strain paths. J Mater Process Technol. 2015;224:102-16.
  • 5. Kubík P, Šebek F, Hůlka J. Calibration of ductile fracture criteria at negative stress triaxiality. Int J Mech Sci. 2016;108:90-103.
  • 6. Li H, Fu MW, Lu J. Ductile fracture: experiments and computations. Int J Plast. 2011;27(2):147-80.
  • 7. Brünig M, Gerke S, Schmidt M. Damage and failure at negative stress triaxialities: experiments, modeling and numerical simulations. Int J Plast. 2018;102:70-82.
  • 8. Dorogoy A, Rittel D, Godinger A. Modification of the shear-compression specimen for large strain testing. Exp Mech. 2015;55(9):1627-39.
  • 9. Yin Y, Li MF, Han QH. A new micromechanical criterion for ductile fracture of G20Mn5QT cast steels under shear stress. Int J Steel Struct. 2022;22(5):1306-21.
  • 10. Rittel D, Lee S, Ravichandran G. A shear-compression specimen for large strain testing. Exp Mech. 2002;42(1):58-64.
  • 11. Khan AS, Liu HW. A new approach for ductile fracture prediction on Al 2024-T351 alloy. Int J Plast. 2012;35:1-12.
  • 12. Fu JW, Haeri H, Sarfarazi V, Asgari K, Ebneabbasi P, Marji MF, Guo MD. Extended finite element method simulation and experimental test on failure behavior of defects under uniaxial compression. Mech Adv Mater Struc. 2022;29(27):6966-81.
  • 13. Lou YS, Yoon JW, Huh H. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. Int J Plast. 2014;54:56-80.
  • 14. Gan KW, Laux T, Taher ST. A novel fixture for determining the tension/compression-shear failure envelope of multidirectional composite laminates. Compos Struct. 2018;184:662-73.
  • 15. Gerke S, Zistl M, Bhardwaj A. Experiments with the X0-specimen on the effect of non-proportional loading paths on damage and fracture mechanisms in aluminum alloys. Int J Solids Struct. 2019;163:157-69.
  • 16. Ma YS, Sun DZ, Andrieux F. Influences of initial porosity, stress triaxiality and Lode parameter on plastic deformation and ductile fracture. Acta Mech Solida Sin. 2017;30(5):493-506.
  • 17. Testa G, Bonora N, Ruggiero A. Stress triaxiality effect on void nucleation in ductile metals. Fatigue Fract Eng M. 2020;43(7):1473-86.
  • 18. Khan A S, Huang S J. Continuum Theory of Plasticity. Wiley. 1st edition, 1995.
  • 19. Kong DY, Yang B. Enhanced voids growth model for ductile fracture prediction of high-strength steel Q690D under monotonic tension: experiments and numerical simulation. J Struct Eng. 2020;146(6):0402017.
  • 20. Malcher L, Pires FMA, de Sa JMAC. An extended GTN model for ductile fracture under high and low stress triaxiality. Int J Plast. 2014;54:193-228.
  • 21. Ding F, Hong T, Xu Y. Prediction of fracture behavior of 6061 aluminum alloy based on GTN model. Materials (Basel). 2022;15(9):3212.
  • 22. He Z, Zhu H, Hu YM. An improved shear modified GTN model for ductile fracture of aluminium alloys under different stress states and its parameters identification. Int J Mech Sci. 2021;192: 106081.
  • 23. Lou Y, Chen L, Clausmeyer T. Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals. Int J Solids Struct. 2017;112:169-84.
  • 24. Bai YL, Wierzbicki T. Application of extended Mohr-Coulomb criterion to ductile fracture. Int J Fracture. 2010;161(1):1-20.
  • 25. Qian LY, Paredes M, Wierzbicki T. Experimental and numerical study on shear-punch test of 6060 T6 extruded aluminum profile. Int J Mech Sci. 2016;118:205-18.
  • 26. Qian LY, Ji WT, Sun CY. Prediction of edge fracture during hole-flanging of advanced high-strength steel considering blanking predamage. Eng Fract Mech. 2021;248: 107721.
  • 27. Bao YB, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci. 2004;46(1):81-98.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-665e8058-5747-481f-89d4-d64799cbb2d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.