PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamics of trace metals in sediments of a seasonally hypoxic coastal zone in the southeastern Arabian Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study examined the effect of water column hypoxia on the distribution and geochemical fractionation of trace metals in the seasonally hypoxic coastal environment in the southeastern Arabian Sea. Water and surface sediments were collected fortnightly from the Alappuzha mud bank between April and August 2016, which covered the pre-upwelling and upwelling seasons. The water column was warm and well-oxygenated during April–May. During June–August, the incidence of cold and hypoxic water indicated strong coastal upwelling prevailed in the entire study domain. The Fe and Mn content in sediments gradually decreased, because of the reductive dissolution and subsequent release of metals under hypoxia. The concentration of metals such as Ni, Zn and V decreased substantially under oxygen deficiency, whereas Cr showed marked enrichment in sediments. Although the geochemical forms of trace metals displayed the dominance of residual fractions (inert), the reactive non-residual metal forms (exchangeable, Fe/Mn-(oxy)hydroxide, and organic matter/sulphide bound) showed considerable variability under hypoxia. The shift from Fe/Mn-(oxy)hydroxide bound to organic matter and sulphide bound was evident during hypoxia. Cr exhibited a strong affinity towards organic matter and sulphide, and Pb and Zn showed relatively high association towards the Fe/Mn-(oxy)hydroxide phase. Even with such a phase shift induced by the hypoxic conditions, the concentrations of these metals remained within the normal background levels, indicating the pristine nature of the mud bank environment.
Czasopismo
Rocznik
Strony
735--748
Opis fizyczny
Bibliogr., 79 poz., map., rys., wykr.
Twórcy
  • CSIR – National Institute of Oceanography, Regional Centre, Kochi, India
  • CSIR – National Institute of Oceanography, Regional Centre, Kochi, India
  • Inter University Centre for Development of Marine Biotechnology, School of Marine Sciences, Cochin University of Science and Technology, Kochi, India
  • CSIR – National Institute of Oceanography, Regional Centre, Kochi, India
  • CSIR – National Institute of Oceanography, Regional Centre, Kochi, India
  • CSIR – National Institute of Oceanography, Regional Centre, Mumbai, India
  • CSIR – National Institute of Oceanography, Regional Centre, Kochi, India
Bibliografia
  • 1. Anas, A., Sheeba, V.A., Jasmin, C., Gireeshkumar, T.R., Mathew, D., Krishna, K., Nair, S., Muraleedharan, K.R., Jayalakshmy, K.V., 2018. Upwelling induced changes in the abundance and community structure of archaea and bacteria in a recurring mud bank along the southwest coast of India. Reg. Stud. Mar. Sci. 18, 113-121. https://doi.org/10.1016/j.rsma.2018.01.006
  • 2. Arunpandi, N., Jyothibabu, R., Jagadeesan, L., Gireeshkumar, T.R., Karnan, C., Naqvi, S.W.A., 2017. Noctiluca and copepods grazing on the phytoplankton community in a nutrient-enriched coastal environment along the southwest coast of India. Environ. Monit. Assess. 189. https://doi.org/10.1007/s10661-017-6061-9
  • 3. Atkinson, C.A., Jolley, D.F., Simpson, S.L., 2007. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 69, 1428-1437.
  • 4. Belzile, N., DeVitre, R.R., Tessier, A., 1989. In situ collection of diagenetic iron and manganese oxyhydroxides from natural sediments. Nature 340, 376-377.
  • 5. Berg, P., Risgaard-Petersen, N., Rysgaard, S., 1998. Interpretation of measured concentration profiles in sediment pore water. Limnol. Oceanogr. 43, 1500-1510.
  • 6. Böning, P., Brumsack, H., Böttcher, M., Schnetger, B., Kriete, C., Kallmeyer, J., Borchers, S., 2004. Geochemistry of Peruvian near-surface sediments. Geochim. Cosmochim. Ac. 68, 4429-4451. https://doi.org/10.1016/j.gca.2004.04.027
  • 7. Böning, P., Cuypers, S., Grunwald, M., Schnetger, B., Brumsack, H.J., 2005. Geochemical characteristics of Chilean upwelling sediments at ∼36°S. Mar. Geol. 220 (1—4), 1-21. https://doi.org/10.1016/j.margeo.2005.07.005
  • 8. Böning, P., Brumsack, H.J., Schnetger, B., Grunwald, M., 2009. Trace element signatures of Chilean upwelling sediments at 36°S. Mar. Geol. 259, 112-121.
  • 9. Böning, P., Shaw, T., Pahnke, K., Brumsack, H., 2015. Nickel as indicator of fresh organic matter in upwelling sediments. Geochim. Cosmochim. Acta 162 (1), 99-108. https://doi.org/10.1016/j.gca.2015.04.027
  • 10. Canfield, D.E., 1994. Factors influencing organic carbon preservation in marine sediments. Chem. Geol. 114, 315-329.
  • 11. Canfield, D.E., Thamdrup, E., Hansen, J. W., 1993. The anaerobic degradation of organic matter in Danish coastal sediments : Iron reduction, manganese reduction, and sulfate redution. 57, 3867-3883.
  • 12. Castillo, A., Valdés, J., Sifeddine, A., Vega, S.E., Díaz-Ochoa, J., Marambio, Y., 2018. Evaluation of redox-sensitive metals in marine surface sediments influenced by the oxygen minimum zone of the Humboldt Current System, Northern Chile. Int. J. Sediment Res. 34 (2), 178-190. https://doi.org/10.1016/j.ijsrc.2018.08.005
  • 13. Chakraborty, P., Jayachandran, S., Chakraborty, S., 2018. Chromium speciation in the sediments across the oxygen minimum zone, western continental margin of India. Geol. J. 54 (3), 1132-1140. https://doi.org/10.1002/gj.3214
  • 14. Chakraborty, P., Babu, P.V.R., Sarma, V.V., 2012. A study of lead and cadmium speciation in some estuarine and coastal sediments. Chem. Geol. 217-225, 294-295. https://doi.org/10.1016/j.chemgeo.2011.11.026
  • 15. Chakraborty, P., Chakraborty, S., Jayachandran, S., Madan, R., Sarkar, A., Linsy, P., Nath, B.N., 2016. Effects of bottom water dissolved oxygen variability on copper and lead fractionation in the sediments across the oxygen minimum zone, western continental margin of India. Sci. Total Environ. 1052-1061, 566-567. https://doi.org/10.1016/j.scitotenv.2016.05.125
  • 16. Chakraborty, P., Ramteke, D., Chakraborty, S., 2015. Geochemical partitioning of Cu and Ni in mangrove sediments: Relationships with their bioavailability. Mar. Pollut. Bull. 93, 194-201. https://doi.org/10.1016/j.marpolbul.2015.01.016
  • 17. Childress, J.J., Seibel, B.A., 1998. Life at stable low oxygen levels: adaptations of animals to oceanic oxygen minimum layers. J. Exp. Biol. 201, 1223-1232.
  • 18. Dang, D.H., Lenoble, V., Durrieu, G., Omanovi ́c, D., Mullot, J.U., Mounier, S., Garnier, C., 2015. Seasonal variations of coastal sedimentary trace metals cycling: insight on the effect of manganese and iron (oxy)hydroxides, sulphide and organic matter. Mar. Pollut. Bull. 92 (1—2), 113-124.
  • 19. Dhanakumar, S., Murthy, K.R., Solaraj, G., Mohanraj, R., 2013. Heavy-Metal Fractionation in Surface Sediments of the Cauvery River Estuarine Region, Southeastern Coast of India. Environ. Contam. Toxicol. 64. https://doi.org/10.1007/s00244-013-9886-4
  • 20. Eggleton, J., Thomas, K.V., 2004. A review of factors affecting the release and bioavailability of contaminants during sediemnt disturbance events. Environment International 30, 973-980.
  • 21. Feely, R.A, Chester, A.J., Paulson, A.J., Larrance, J.D., 1982. Relationships Between Organically Bound Cu and Mn in Settling Particulate Matter and Biological Processes in a Subarctic Estuary 1. Estuaries 5, 74-80.
  • 22. Folk, R.L., 1980. Petrology of sedimentary rocks. Hemphil Publ. Co., Austin, Texas, 78703, 184 pp.
  • 23. Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., Maynard, V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43, 1075-1090. https://doi.org/10.1016/0016-7037(79)90095-4
  • 24. Gallon, C., Tessier, A., Gobeil, C., Torre, M.C.A., 2004. Modeling diagenesis of lead in sediments of a Canadian Shield lake. Geochim. Cosmochim. Acta 68, 3531-3545. https://doi.org/10.1016/j.gca.2004.02.013
  • 25. Gireeshkumar, T.R., Mathew, D., Pratihary, A.K., Naik, H., Narvekar, K.U., Araujo, J., Balachandran, K.K., Muraleedharan, K.R., Thorat, B., Nair, M., Naqvi, S.W.A., 2017. Influence of upwelling induced near shore hypoxia on the Alappuzha mud banks, South West Coast of India. Cont. Shelf Res. 139, 1-8. https://doi.org/10.1016/j.csr.2017.03.009
  • 26. Gireesh Kumar, T.R., Dayana Mathew, Udayakrishnan, P.B., Shameem, K., Fahad Fathin, K.P., Furtado, C.M., Deepulal, P.M., Nair, M., Balachandran, K.K., 2020. Montmorillonite and phosphorus enrichment in sediments as the causative factor for the formation of mud banks along the southwest coast of India. Reg. Stud. Marine Sci. Vol. 40, 101517. https://doi.org/10.1016/j.rsma.2020.101517
  • 27. Gleyzes, C., Tellier, S., Astruc, M., 2002. Fractionation studies of trace elements in contaminated soils and sediemnts: a review of sequential extraction procedure. Trends Anal. Chem. 21, 451-467.
  • 28. Graham, W.F., Bender, l., Klinkhammer, G.P., 1976. Manganese in Narragansett Bay. Limnol. Oceanogr. 21, 665-673.
  • 29. Grasshoff, K., Ehrhardt, M., Kremling, K., 1999. Methods of Sea Water Analysis. VCH, Wainheins, Germany, 159-196.
  • 30. Guha, H., Saiers, J.E., Brooks, S., Jardine, P., Jayachandran, K., 2001. Chromium transport, oxidation, and adsorption in manganese-coated sand. J. Contam. Hydrol. 49 (3), 311-334.
  • 31. Guo, T., Delaune, R.D., Patrick, W.H., 1997. In: The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment, Vol. 23. Pergamon Press, 305-316.
  • 32. Gupta, G.V.M., Sudheesh, V., Sudharma, K.V., Saravanane, N., Dhanya, V., Dhanya, K.R., Lakshmi, G., Sudhakar, M., Naqvi, S.W.A., 2016. Evolution to decay of upwelling and associated biogeochemistry over the southeastern Arabian Sea shelf. Biogeosciences 121 (1), 159-175. https://doi.org/10.1002/2015JG003163
  • 33. Helmond, N.A.G.M.Van, Jilbert, T., Slomp, C.P., 2018. Hypoxia in the Holocene Baltic Sea: Comparing modern versus past intervals using sedimentary trace metals. Chem. Geol. 493, 478-490. https://doi.org/10.1016/j.chemgeo.2018.06.028
  • 34. Henrichs, S.M., Reeburgh, W.S., 1987. Anaerobic mineralisation of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. J. 5, 191-237.
  • 35. Horowitz, A.J., Elrick, K., 1987. The relation of stream sediment surfacearea, grainsize and composition totrace element chemistry. Appl. Geochemistry 2.
  • 36. Jahnke, R.A., Emerson, S.R., Murray, J.W., 1982. A model of oxygen reduction, denitrifica- tion, and organic matter mineralisation in marine sediments1. Limnol. Oceanogr. 27 (4), 610-623.
  • 37. James, B.R., 2002. Chemical transformations of chromium in soils: Relevance to mobility, biovailability and remediation. The International Chromium Development Association The chromium file, no. 8 Available at.
  • 38. Jayaraj, K.A., Jayalakshmi, K.V., Saraladevi, K., 2007. Influence of environmental properties on macrobenthos in the northwest Indian Shelf. Environ. Monit. Assess. 127, 459-475.
  • 39. Jensen, H.S., Mortensen, P.B., Andersen, F.O., Jensen, A., 1995. Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark. Limnol. Oceanogr. 36, 908-917.
  • 40. Joydas, T.V., Damodaran, R., 2014. Infaunal macrobenthos of the oxygen—minimum zone on the Indian western continental shelf. Mar. Ecol. 35, 22-35.
  • 41. Jyothibabu, R., Balachandran, K.K., Jagadeesan, L., Karnan, C., Arunpandi, N., Naqvi, S.W.A., Pandiyarajan, R.S., 2018. Mud Banks along the southwest coast of India are not too muddy for plankton. Sci. Rep. 8, 1-13.
  • 42. Karnan, C., Jyothibabu, R., Manoj Kumar, T.M., Balachandran, K.K., Arunpandi, N., Jagadeesan, L., 2017. Seasonality in autotrophic mesoplankton in a coastal upwelling-mud bank environment along the southwest coast of India and its ecological implications. Cont. Shelf Res. 146, 1-12. https://doi.org/10.1016/j.csr.2017.08.006
  • 43. Krom, M.D., Berner, R.A., 1980. Adsorption of phosphate in anoxic marine sediments. Limnol. Oceanogr. 25, 797-806.
  • 44. Lakatos, J., Brown, S.D., Snape, C.E., 2002. Coals as sorbents for the removal and reduction of hexavalent chro- mium from aqueous waste streams. Fuel 81, 691-698.
  • 45. Levin, L.A., 2003. Oxygen minimum zone benthos: Adaptation and community response to hypoxia. Oceanogr. Mar. Biol. Ann. Rev. 41, 1-45.
  • 46. Levin, L.A., Ekau, W., Gooday, A.J., Jorissen, F., Middelburg, J.J., Naqvi, S.W.A., Neira, C., Rabalais, N.N., Zhang, J., 2009. Effect of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6, 2063-2098.
  • 47. Madhu, N.V., Anil, P., Gireeshkumar, T.R., Muraleedharan, K.R., Kiran, K., Vishal, C.R., 2020. Phytoplankton characterisation in the Alappuzha mud banks during the pre-/post phases of a red-tide, Prorocentrum shikokuense Hada. Reg. Stud. Mar. Sci. 40, 101486. https://doi.org/10.1016/j.rsma.2020.101486
  • 48. Madhu, N.V., Anil, P., Meenu, P., Gireeshkumar, T.R., Muraleedharan, K.R., Rehitha, T.V., Dayana, M., Vishal, C.R., 2021. Response of coastal phytoplankton to upwelling induced hydrological changes in the Alappuzha mud bank region, southwest coast of India. Oceanologia 63 (2), 261-275. https://doi.org/10.1016/j.oceano.2021.02.001
  • 49. Malandrino, M., Abollino, O., Buoso, S., Casalino, C.E., Gasparon, M., Giacomino, A., La Gioia, C., Mentasti, E., 2009. Geochemical characterisation of Antartic soils and lacustrine sediments from Terra Nova Bay. Microchem. J. 92 (1), 21-31.
  • 50. Mathew, D., Gireeshkumar, T.R., Balachandran, K.K., Udayakrishnan, P.B., Shameem, K., Deepulal, P.M., Nair, M., Madhu, N.V, Muraleedharan, K.R., 2020. Influence of hypoxia on phosphorus cycling in Alappuzha mud banks, southwest coast of India. Reg. Stud. Mar. Sci. 34, 101083. https://doi.org/10.1016/j.rsma.2020.101083
  • 51. Mathew, D., Gireeshkumar, T.R., Udayakrishnan, P.B., Muraleedharan, K.R., Madhu, N.V., Nair, M., Revichandran, C., Balachandran, K.K., 2019. Inter-annual variations in the hydrochemistry of Alappuzha mud banks, southwest coast of India. Cont. Shelf Res. 177, 42-49. https://doi.org/10.1016/j.csr.2019.03.008
  • 52. Mathew, D., Gireeshkumar, T.R., Udayakrishnan, P.B., Shameem, K., Nayana, P.M., Deepulal, P.M., Sarath, R., Nair, M., Jaleel, A.K.U., Balachandran, K.K., 2022. Geochemical speciation of iron under nearshore hypoxia: A case study of Alappuzha mud banks, southwest coast of India. Cont. Shelf Res. 238. https://doi.org/10.1016/j.csr.2022.104686
  • 53. McCave, 1984. Size spectra and aggregation of suspended particles in the deep ocean. Deep Sea Res. Pt. A 31 (4), 329-352.
  • 54. MacDonald, D.D., Scottcarr, R., Calder, F.D., Long, E.R., Ingersoll, C.G., 1996. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5, 253-278. https://doi.org/10.1007/BF00118995
  • 55. Munoz, P., Dezileau, L., Cardenas, L., Sellanes, J., Lange, C.B., Inostroza, J., Muratli, J., Salamance, M.A., 2012. Geochemistry of trace metals in shelf sediments affected by seasonal and permanent low oxygen conditions off central Chile, SE Pacific (∼36°S). Cont. Shelf Res. 33, 51-68.
  • 56. Muraleedharan, K.R., Dinesh Kumar, P.K., Prasanna Kumar, S., Srijith, B., John, S., Naveen Kumar, K.R., 2017. Observed salinity changes in the Alappuzha mud bank, southwest coast of India and its implication to hypothesis of mudbank formation. Cont. Shelf Res. 137, 39-45. https://doi.org/10.1016/j.csr.2017.01.015
  • 57. Naqvi, S.W.A., Jayakumar, D.A., Narvekar, P.V, Naik, H., 2000. Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature 408, 346-349.
  • 58. Naqvi, S.W.A., Bange, H.W., Farias, L, Monteiro, P.M.S., Scranton, M.I., Zhang, J., 2010. Coastal hypoxia /anoxia as a source of CH4 and N2 O. Biogeosciences Discuss. 6, 9455-9523. https://doi.org/10.5194/bgd- 6- 9455- 2009
  • 59. Naqvi, S.W.A., Naik, H., Jayakumar, A., Pratihary, A. K., Narvenkar, G., Kurian, S., Agnihotri, R., Shailaja, M. S., Narvekar, P. V. 2009. Seasonal Anoxia Over the Western Indian Continental Shelf. In: Indian Ocean Biogeochemical Processes and Ecological Variability, Wiggert, J.D., Hood, R.R., Naqvi, S.W.A., Brink, K.H., Smith, S.L. (Eds.), Vol. 185, Amer. Geophys. Union, Washington, 333-346.
  • 60. Naqvi, S.W.A., Naik, H., Pratihary, A., D’Souza, W., Narvekar, P.V., Jayakumar, D.A., Devol, A.H., Yoshinari, T., Saino, T., 2006. Coastal versus open ocean denitrification in the Arabian Sea. Biogeosciences 3 (4), 621-633.
  • 61. Naqvi, S.W.A., Unnikrishnan, A.S., 2009. Hydrography and Biogeochemistry of the Coastal Ocean. In: Surface Ocean—Lower Atmosphere Processes, Le Quéré, C., Saltzman, E.S. (Eds.), Geophys. Monogr. Ser. Vol. 187, Amer. Geophys. Union, Washington, 233-250. https://doi.org/10.1029/2008GM000771
  • 62. Nameroff, T., Balistrieri, L., Murray, W., 2002. Suboxic trace metals geochemistry in the Eastern Tropical North Pacific. Geochim. Cosmochim. Ac. 66 (7), 1139-1158.
  • 63. Nemati, K., Bakar, N.K.A., Abas, M.R., Sobhanzadeh, E., 2011. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. J. Hazard. Mater. 192, 402-410. https://doi.org/10.1016/j.jhazmat.2011.05.039
  • 64. Parvathi, A., Jasna, V., Aswathy, V.K., Nathan, V.K., Aparna, S., Balachandran, K.K., 2019. Microbial diversity in a coastal environment with co-existing upwelling and mud-banks along the south west coast of India. Mol. Biol. Rep. https://doi.org/10.1007/s11033-019-04766-y
  • 65. Prasanna Kumar, S., Dinesh Kumar, P.K., Muraleedharan, K.R., George, G., Mathew, D., Kripa, V., Jeyabaskaran, R., Ramaiah, N., Gopalakrishnan, A., Naqvi, S.W.A., 2018. Mudbanks and fisheries along the Kerala coast-myth and reality. Curr. Sci. India 4, 773-778.
  • 66. Raiswell, R., Canfield, D.E., 1998. Sources of iron for pyrite formation in marine sediments. Am. J. Sci. 298, 219-245. https://doi.org/10.2475/ajs.298.3.219
  • 67. Rauret, G., López-Sánchez, J.F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., Quevauviller, P. 1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. (1), 57-61. https://doi.org/10.1039/a807854h
  • 68. Richard, F.C., Bourg, A.C.M., 1991. Aqueous geochemistry of Cr: A review. Water Res. 25 (7), 807-816.
  • 69. Rowe, G.T., 1971. Benthic biomass in the Pisco, Peru upwelling. Investigacio ́n Pesquera 35, 127-135.
  • 70. Schaller, T., Transportation, S., Board, S., Wehrli, B., 1997. Sedimentary profiles of Fe, Mn, V, Cr, As and Mo as indicators of benthic redox conditions in Baldeggersee Sedimentary profiles of Fe, Mn, V, Cr, As and Mo as indicators of benthic redox conditions in Baldeggersee. Aquatic Sci. 59, 345-361. https://doi.org/10.1007/BF02522363
  • 71. Schulz, H.D., Zabel, M., Schulz, H.D., 2006. Marine Geochemistry, 2nd Edn., Springer, 593 pp.
  • 72. Shynu, R., Rao, V. P., Samiksha, S.V., Vethamony, P., Naqvi, S.W.A., Kessarkar, P.M., Babu, M.T., Dineshkumar, P.K., 2017. Estuarine, Coastal and Shelf Science Suspended matter and fluid mud off Alleppey, southwest coast of India. Estuar. Coast. Shelf Sci. 185, 31-43.
  • 73. SEPA (State Environmental Protection Administration of China), 2002. Marine Sediment Quality (GB 18668—2002). Standards Press of China, Beijing. Slomp, C.P., Van der Gaast, S.J., Van Raaphorst, W., 1996. Phosphorus binding by poorly crystalline iron oxides in North Sea sediments. Mar. Chem. 52, 55-73. https://doi.org/10.1016/0304-4203(95)00078-X
  • 74. Smitha, A., Joseph, K.A., Jayaram, C., Balchand, A.N., 2014. Upwelling in the southeastern Arabian Sea as evidenced by Ekman mass transport using wind observations from OCEANSAT-II Scatterometer.
  • 75. Thamdrup, B., Canfield, D.E., 1996. Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol. Oceanogr. 41, 1629-1650.
  • 76. Twining, B.S., Baines, S.B., Vogt, S., Nelson, D.M., 2012. Role of diatoms in nickel biogeochemistry in the ocean. Global Biogeochem. Cy. 26, 1-9. https://doi.org/10.1029/2011GB004233
  • 77. Van der Geest, H.G., Leon Paumen, M., 2008. Dynamics of metal availability and toxicity in historically polliuted floodplain sediemnts. Sci. Total Environ. 406, 419-425.
  • 78. Vandieken, V., Nickel, M., Jørgensen, B.B., 2006. Carbon mineralisation in Arctic sediments northeast of Svalbard: Mn(IV) and Fe(III) reduction as principal anaerobic respiratory pathways. Mar. Ecol. Prog. Ser. 322, 15-27. https://doi.org/10.3354/meps322015
  • 79. Zhang, X.W., Kong, L.W., Li, J., 2014. An investigation of alternations in Zhanjiang clay properties due to atmospheric oxidation. Géotechnique 64 (12), 1003-1009.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-665c2f8f-a685-44ff-887f-2b285d773e9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.