PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combined axial and lateral stability behavior of random checkerboard reinforced cylindrical microshells via a couple stress-based moving Kriging meshfree model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this investigation, a size-dependent numerical solution methodology is devised to analyze nonlinear buckling and postbuckling of cylindrical microsized shells made of checkerboard randomly reinforced nanocomposites subjected to a combination of axial and lateral compressions. To accomplish this purpose, the modified couple stress elasticity continuum is formulated within the third-order shear flexible shell model. Using a probabilistic-based homogenization plan in conjunction with the Monte-Carlo simulation, the effective mechanical parameters of the randomly reinforced nanocomposites are captured. The established size-dependent problem is then numerically solved via using the moving Kriging meshfree technique having the ability to enforce the required boundary conditions straightly at the associated nodes without using any type of penalty technique. By tracing the nonlinear stability paths, it is revealed that for the both axial dominated and lateral dominated loading cases, the stiffening feature related to the rotation gradient tensor causes that the microshell endures higher shortening before the buckling phenomenon occurs. In addition, it is found that by increasing the length to width ratio of graphene nanofillers, the effect of combination of axial or lateral load increases a bit.
Rocznik
Strony
art. no. e15, 2022
Opis fizyczny
Bibliogr. 53 poz., rys., wykr.
Twórcy
autor
  • School of Civil and Transportation Engineering, Qinghai Minzu University, Xining 810007, Qinghai, China
autor
  • Department of Mechanical Engineering, Eastern Mediterranean University, North Cyprus via Mersin 10, Famagusta, Turkey
  • Department of Mechanical Engineering Science, University of Johannesburg, Gauteng 2006, South Africa
  • School of Science and Technology, The University of Georgia, 0171 Tbilisi, Georgia
Bibliografia
  • 1. Sahmani S, Saber-Samandari S, Shahali M, Yekta HJ, et al. Mechanical and biological performance of axially loaded novel bio-nanocomposite sandwich plate-type implant coated by biological polymer thin film. J Mech Behav Biomed Mater. 2018;88:238–50.
  • 2. Lezgy-Nazargah M, Meshkani Z. An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundations. Struct Eng Mech. 2018;66:665–76.
  • 3. Zuo X, Yan Z, Hou K, Yang H, Xi Y. Highly stable hierarchical porous nanosheet composite phase change materials for thermal energy storage. Appl Therm Eng. 2019;163:114417.
  • 4. Sahmani S, Shahali M, Ghadiri Nejad M, Khandan A, Aghdam MM, Saber-Samandari S. Effect of copper oxide nanoparticles on electrical conductivity and cell viability of calcium phosphate scaffolds with improved mechanical strength for bone tissue engineering. Eur Phys J Plus. 2019;134:7.
  • 5. Jeong JH, Kim YA, Kim B-H. Electrospun polyacrylonitrile/cyclodextrin-derived hierarchical porous carbon nanofiber/MnO 2 composites for supercapacitor applications. Carbon.2020;164:296–304.
  • 6. Chen S, Gao J, Yan E, Wang Y, Li Y, et al. A novel porous composite membrane of PHA/PVA via coupling of electrospinning and spin coating for antibacterial applications. Mater Lett. 2021;301:130279.
  • 7. Sun Y, Liu D, Liu W, Liu H, Zhao J, et al. Fabrication of porous polyaniline/MWCNTs coated Co 9 S 8 composite for electro-chemical hydrogen storage application. J Phys Chem Solids. 2021;157:110235.
  • 8. Hwang J, Kim Y, Yang H, Oh JH. Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor. Compos Part B Eng.2021;211:108607.
  • 9. Prakash C, Singh S, Ramakrishna S, Krolczyk G, Le CH. Micro-wave sintering of porous Ti–Nb-HA composite with high strength and enhanced bioactivity for implant applications. J Alloys Compd. 2021;824:153774.
  • 10. Sahmani S, Bahrami M, Aghdam MM, Ansari R. Surface effects on the nonlinear forced vibration response of third-order shear deformable nanobeams. Compos Struct. 2014;118:149–58.
  • 11. Sedighi HM, Keivani M, Abadyan M. Modified continuum model for stability analysis of asymmetric FGM double-sided NEMS: corrections due to finite conductivity, surface energy and nonlocal effect. Compos B Eng. 2015;83:117–33.
  • 12. Li L, Li X, Hu Y. Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. Int J Eng Sci. 2016;102:77–92.
  • 13. Simsek M. Nonlinear free vibration of a functionally graded nano-beam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int J Eng Sci. 2016;105:12–27.
  • 14. Sahmani S, Aghdam MM. Nonlinear vibrations of pre-and post- buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory. J Biomech. 2017;65:49–60.
  • 15. Khakalo S, Balobanov V, Niiranen J. Modelling size-dependent bending, buckling and vibrations of 2D triangular lattices by strain gradient elasticity models: applications to sandwich beams and auxetics. Int J Eng Sci. 2018;127:33–52.
  • 16. Sahmani S, Fattahi AM. Small scale effects on buckling and postbuckling behaviors of axially loaded FGM nanoshells based on nonlocal strain gradient elasticity theory. Appl Math Mech. 2018;39:561–80.
  • 17. Thanh C-L, Tran LV, Vu-Hu T, Abdel-Wahab M. The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis. Comput Methods Appl Mech Eng. 2019;350:337–61.
  • 18. Sahmani S, Fattahi AM, Ahmed NA. Analytical mathematical solution for vibrational response of postbuckled laminated FG-GPLRC nonlocal strain gradient micro-/nanobeams. Eng Comput. 2019;35:1173–89.
  • 19. Mercan K, Emsen E, Civalek O. Effect of silicon dioxide substrate on buckling behavior of Zinc Oxide nanotubes via size-dependent continuum theories. Compos Struct. 2019;218:130–41.
  • 20. Sarafraz A, Sahmani S, Aghdam MM. Nonlinear secondary resonance of nanobeams under subharmonic and superharmonicexcitations including surface free energy effects. Appl Math Model. 2019;66:195–226.
  • 21. Tang H, Li L, Hu Y. Coupling effect of thickness and shear deformation on size-dependent bending of micro/nano-scale porous beams. Appl Math Model. 2019;66:527–47.
  • 22. Zhou Z, Ni Y, Tong Z, Zhu S, Sun J, Xu X. Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells. Int J Mech Sci. 2019;151:537–50.
  • 23. Sahmani S, Safaei B. Influence of homogenization models on size-dependent nonlinear bending and postbuckling of bi-directional functionally graded micro/nano-beams. Appl Math Model. 2020;82:336–58.
  • 24. Fang J, Zheng S, Xiao J, Zhang X. Vibration and thermal buckling analysis of rotating nonlocal functionally graded nanobeams in thermal environment. Aerosp Sci Technol. 2020;106:106146.
  • 25. Li Q, Wu D, Gao W, Tin-Loi F. Size-dependent instability of organic solar cell resting on Winkler–Pasternak elastic foundation based on the modified strain gradient theory. Int J Mech Sci. 2020;177:105306.
  • 26. Yuan Y, Zhao K, Zhao Y, Sahmani S, Safaei B. Couple stress-based nonlinear buckling analysis of hydrostatic pressurized functionally graded composite conical microshells. Mech Mater. 2020;148:103507.
  • 27. Karamanli A, Vo TP. Size-dependent behaviour of functionally graded sandwich microbeams based on the modified strain gradient theory. Compos Struct. 2020;246:112401.
  • 28. Lin F, Tong LH, Shen H-S, Lim CW, Xiang Y. Assessment of first and third order shear deformation beam theories for the buckling and vibration analysis of nanobeams incorporating surface stress effects. Int J Mech Sci. 2020;186:105873.
  • 29. Fan F, Xu Y, Sahmani S, Safaei B. Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach. Comput Methods Appl Mech Eng. 2020;372:113400.
  • 30. Tang Y, Qing H. Elastic buckling and free vibration analysis of functionally graded Timoshenko beam with nonlocal strain gradient integral model. Appl Math Model. 2021;96:657–77.
  • 31. Belarbi M-O, Houari MS-A, Daikh AA, Garg A, Merzouki T, et al. Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory. Compos Struct. 2021;264:113712.
  • 32. Rao R, Sahmani S, Safaei B. Isogeometric nonlinear bending analysis of porous FG composite microplates with a central cutout modeled by the couple stress continuum quasi-3D plate theory. Arch Civ Mech Eng. 2021;21:98.
  • 33. Yin S, Xiao Z, Deng Y, Zhang G, Liu J, Gu S. Isogeometric analysis of size-dependent Bernoulli–Euler beam based on a reformulated strain gradient elasticity theory. Comput Struct. 2021;253:106577.
  • 34. Chen S-X, Sahmani S, Safaei B. Size-dependent nonlinear bending behavior of porous FGM quasi-3D microplates with a central cutout based on nonlocal strain gradient isogeometric finite element modelling. Eng Comput. 2021;37:1657–78.
  • 35. Wang BB, Lu C, Fan CY, Zhao MH. A meshfree method with gradient smoothing for free vibration and buckling analysis of a strain gradient thin plate. Eng Anal Bound Elem. 2021;132:159–67.
  • 36. Bacciocchi M, Tarantino AM. Analytical solutions for vibrations and buckling analysis of laminated composite nanoplates based on third-order theory and strain gradient approach. Compos Struct. 2021;272:114083.
  • 37. Yang Z, Lu H, Sahmani S, Safaei B. Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness. Arch Civ Mech Eng. 2021;21:114.
  • 38. Li YS, Xiao T. Free vibration of the one-dimensional piezoelectric quasicrystal microbeams based on modified couple stress theory. Appl Math Model. 2021;96:733–50.
  • 39. Tao C, Dai T. Isogeometric analysis for size-dependent nonlinear free vibration of graphene platelet reinforced laminated annular sector microplates. Eur J Mech A Solids. 2021;86:104171.
  • 40. Sahmani S, Safaei B. Microstructural-dependent nonlinear stability analysis of random checkerboard reinforced composite micro-panels via moving Kriging meshfree approach. Eur Phys J Plus. 2021;136:806.
  • 41. Arshid E, Arshid H, Amir S, Mousavi SB. Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory. Arch Civ Mech Eng. 2021;21:6.
  • 42. Civalek O, Dastjerdi S, Akbas SD, Akgoz B. Vibration analysis of carbon nanotube-reinforced composite microbeams. Math Methods Appl Sci. 2021. https://doi.org/10.1002/mma.7069.
  • 43. Gibson Ronald F. Principles of composite material mechanics. Boca Raton: CRC Press; 2016.
  • 44. Hjazi SM, Abtahi SM, Safaei F. Investigation of thermal stress distribution in fiber-reinforced roller compacted concrete pavements. J Ind Text. 2014;45:896–914.
  • 45. Aghababaei R, Reddy JN. Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates. J Sound Vib. 2009;326:277–89.
  • 46. Yang F, Chong ACM, Lam DCC, et al. Couple stress based strain gradient theory for elasticity. Int J Solids Struct. 2002;39:2731–43.
  • 47. Bui TQ, Nguyen MN. A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates. Comput Struct. 2011;89:380–94.
  • 48. Gu L. Moving Kriging interpolation and element-free Galerkin method. Int J Numer Methods Eng. 2003;56:1–11.
  • 49. Thai CH, Do VNV, Nguyen-Xuan H. An improved moving Kriging-based meshfree method for static, dynamic and buckling analyses of functionally graded isotropic and sandwich plates. Eng Anal Bound Elem. 2016;64:122–36.
  • 50. Thai CH, Ferreira AJM, Nguyen-Xuan H. Naturally stabilized nodal integration meshfree formulations for analysis of laminated composite and sandwich plates. Compos Struct. 2017;178:260–76.
  • 51. Pirbodaghi T, Ahmadian MT, Fesanghary M. On the homotopy analysis method for non-linear vibration of beams. Mech Res Commun. 2009;36:143–8.
  • 52. Lou J, He L, Wu H, Du J. Pre-buckling and buckling analyses of functionally graded microshells under axial and radial loads based on the modified couple stress theory. Compos Struct. 2016;142:226–37.
  • 53. Kabir H, Aghdam MM. A robust Bézier based solution for nonlinear vibration and post-buckling of random checkerboard graphene nano-platelets reinforced composite beams. Compos Struct. 2019;212:184–98.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-665bda97-56f7-4d37-b464-33ab6ec6f360
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.