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Abstract. By applying two versions of the mountain pass theorem and Ekeland’s variational
principle, we prove three different situations of the existence of solutions for the following
Steklov problem:

Ay = P2y inQ,

\Vu|p(l)_2% = Mul™ 724 on 09,

where Q C RY (N > 2) is a bounded smooth domain and p,q: Q — (1, +00) are continuous
functions.
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1. INTRODUCTION

Motivated by the developments in elastic mechanics, electrorheological fluids and
image restoration [3,16,18,21,22], the interest in variational problems and differential
equations with variable exponents has grown in recent decades; see for example
[4,9,11,14]. We refer the reader to [1,2,5,6,19,20] for developments in p(z)-Laplacian
equations.

The aim of this article is to analyse the existence of solutions of the nonhomogeneous
eigenvalue problem

Apzyu = luP@=2y i Q,

(1.1)
|vu|p(fﬂ)—2% = )\|u|‘I(”’)_2u on 0,
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where Q C RN (N > 2) is a bounded smooth domain, 2% is the outer unit normal

derivative on 52, p is a continuous function on Q. The main interest in studying such
problems arises from the presence of the p(z)-Laplace operator div(|Vu|P(*)~2Vu),
which is a generalization of the classical p-Laplace operator div(|Vu|P~2Vu) obtained
in the case when p is a positive constant. Many authors have studied the inhomogeneous
Steklov problems involving the p-Laplacian [13]. The authors have studied this class
of inhomogeneous Steklov problems in the cases of p(x) = p =2 and of p(x) =p > 1,
respectively. In [4], the authors have studied the case ¢(z) = p(z) for all z € Q,
they proved that the existence of infinitely many eigenvalue sequences. Unlike the
p-Laplacian case, for a variable exponent p(x) (# constant), there does not exist a
principal eigenvalue and the set of all eigenvalues is not closed under some assumptions.
Finally, they presented some sufficient conditions for the infimum of all eigenvalues
which is zero and positive, respectively.

Here, problem (1.1) is stated in the framework of the generalized Sobolev space
X := WbP@)(Q) for which some elementary properties are stated below.

By a weak solution for (1.1) we understand a function v € X such that

/|Vu|p(z)72Vqu dz + / Ju|P@ =20 da — )\/ |u|"® =2y do =0 for allv € X.
Q Q o0

We point out that in the case when w is nontrivial, we say that A € R is an eigenvalue
of (1.1) and u is called an associated eigenfunction.

Inspired by the works of Mihailescu and Radulescu [10,14,15,17], we study (1.1)
in three distinct situations.

This article consists of three sections. Section 2 contains some preliminary properties
concerning the generalized Lebesgue-Sobolev spaces and an embedding result. The
main results and their proofs are given in Section 3.

2. PRELIMINARIES

For completeness, we first recall some facts on the variable exponent spaces L”(z)(Q)
and WHP(®)(Q). For more details, see [7,8]. Suppose that € is a bounded open domain
of RY with smooth boundary 9 and p € C (), where

Ci(Q) = {p € C(Q) : inf p(x) > 1}.
€N
Denote by
p~ = inf p(z), p* = supp(a).
e 2€Q

Define the variable exponent Lebesgue space LP(*)(Q) by

LP@(Q) = {u ’ u: Q — R is measurable and / ulP@ da < +oo},
Q
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p(z)
|| p () :inf{7>0:/‘u’ dx < 1}.
T
Q

Define the variable exponent Sobolev space W1P(®)(Q) by

with the norm

WHO(Q) = {u e P (Q) : [Vu| € I (@)},

with the norm

p(z)

u
N
.

\Y
||u||:inf{7'>0:/(u
-
Q

”u” = |vu|p(1) + |u‘p(m)'

p(ﬂ?))@j < 1}’

We refer the reader to [6,7] for the basic properties of the variable exponent Lebesgue
and Sobolev spaces.

Lemma 2.1 ([8]). Both (LP®)(Q),| - |p)) and (WEPE(Q), |- ||) are separable and
uniformly convex Banach spaces.

Lemma 2.2 ([8]). Holder inequality holds, namely

/|uv|da: < 20ulp@y [Vlprz), uwE Lp(x)(Q),v € Lp/(z)(Q),
Q

1 1
where o) + @) 1.
Lemma 2.3 ([8]). Let I(u) = [(|Vul[P® + |uP®)dz. For u e WP@)(Q), we have:

Q
() | <1(=1,>1) < I(u) <1(=1,>1),
.. + -
() Jlul <1 = flull”” < I(uw) < flull”
(iii) Jlull 2 1= [[ul|? < I(u) < [luf”".
Lemma 2.4 ([7]). Assume that the boundary of ) possesses the cone property and

p € C(Q) and 1 < q(x) < p*(x) for x € Q, then there is a compact embedding
Whr)(Q) < L@ (Q), where

Np(z) :
p* (x) _ I N=p@) if p(:l:) <N,
400, if p(z)> N.

Let a : 992 — R be measurable. Define the weighted variable exponent Lebesgue
space by

LZE;;(@Q) = {u ‘ u : 00 — R is measurable and / la(z)||ulP®do < —|—oo},
o0
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with the norm

. w |P(x)
|u\(p(x)7a(x)) = inf {7‘ >0: / |a(m)|‘;’ do < ]_}’
[e19)

where do is the measure on the boundary. Then LZ 8(69) is a Banach space. In

particular, when a € L*(99), LZEi;(@Q) = LP@)(09).

Lemma 2.5 ([4]). Let p(u) = [, |a(z)||u|P®do. Foru € Lp(@ (09), we have:

a(z)
. - +
0 lulp@).a@) =1 = |u‘1()13r(z),a(a:)) < plu) < |u‘1()11(z),a(x))’
(i) [ulp),a@) < 1= [ulty ) @) < PW) < ulfyn) a@):-

For A C €, we set

p (A) = inf p(x), pT(A)=supp(x).

€A z€A
Define (N 1p(e)
p°(z) = (p())” == .
0, if p(z)>N,
r(z) —1
p?(w)(l‘) = Wﬁ@%

where z € 9, r € C(0,R) and r(z) > 1.

Lemma 2.6 ([4]). Assume that the boundary of ) possesses the cone property and
p € C(Q) with p~ > 1. Suppose that a € L"® (0Q), r € C(9Q) with r(x) > pg’(i(;ll
for all z € 9Q. If g € C(09Q) and 1 < q(x) < p?(I)(a:) for all x € 09, then there
is a compact embedding Wl’p(”)(Q) ng)(aﬂ) In particular, there is a compact

embedding WP (Q) < LI (9Q), where 1 < q(z) < p?(z) for all x € 99.

The Euler-Lagrange functional associated with (1.1) is defined as @y : X — R,

1 1 1
Dy (u :/—Vup(:”)dx—i-/—u”(”)daﬁ—)\/—uq(m)da.
0= ) v ok )"

Q Q o0

Standard arguments imply that @ € C*(X,R) and

(D (u) /|Vu|p("” 2Vqudac—i—/|u|p @) =2yp dx — /|u|q(w 2uvdo

for all u,v € X. Thus, the weak solutions of (1.1) coincide with the critical points
of @,. If such a weak solution exists and is nontrivial, then the corresponding A is an
eigenvalue of problem (1.1).
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Next, we write @ as

— A— B,
where A, B: X — X' are defined by
(A(u),v /|Vu|p “2VuVovdzr + / JulP@ =2y du,
/|u|q(m uv do.

o0

Lemma 2.7 ([9]). A satisfies condition (S1), namely, u, — u in X and
lim sup,,_, oo (A(up), up, —w) <0, imply u, — u in X.

Remark 2.8. Noting that @/ is still of type (S*). Hence, any bounded (PS) sequence
of @, in the reflexive Banach space X has a convergent subsequence.

3. MAIN RESULTS AND PROOFS
Theorem 3.1. Let p,q € C(Q). If
" <p, (3.1)

then any A\ > 0 is an eigenvalue for problem (1.1). Moreover, for any X\ > 0 there
exists a sequence (un) of nontrivial weak solutions for problem (1.1) such that u, — 0
in X.

We want to apply the symmetric mountain pass lemma in [12].

Theorem 3.2 (Symmetric mountain pass lemma). Let E be an infinite dimensional
Banach space and I € C1(E, R) satisfy the following two assumptions:

(A1) I(u) is even, bounded from below, I(0) =0 and I(u) satisfies the Palais-Smale
condition (PS), namely, any sequence u,, in E such that I(u,) is bounded and
I'(uyn) = 0 in E as n — 0o has a convergent subsequence.

(A2) For each k € N, there exists an Ay, € 'y such that sup,,¢ 4, I(u) <O0.

Then, I(u) admits a sequence of critical points uy such that

I(ug) < 0,ux #0 and lim ug =0,
k—o0

where Ty, denote the family of closed symmetric subsets A of E such that 0 ¢ A and
v(A) > k with v(A) is the genus of A, i.e.,

v(K) = inf {k € N : there ezists h : K — R"\{0} such that h is continuous and odd}.



858 Mostafa Allaoui

We start with two auxiliary results.

Lemma 3.3. The functional ®y is even, bounded from below and satisfies the (PS)
condition, and ®(0) = 0.

Proof. Tt is clear that @) is even and ®,(0) = 0. Since ¢© < p~ and X is continuously
embedded both in LI (09), there exists two positive constants M;, My > 0 such that

/|u|q*da < Mi|lul|e", /|u\q*da < Mylul|f for allu € X.
o o0
According to the fact that
lu(@)]9®) < |u(z)|7" + ju(z)|?  for allz € Q, (3.2)
for all u € X, we have

AM; _AM,

1
By (u) > 7/(Wp<z>+ up(z))dx gt ¢
()p+ [Vl |ul _|||| q_|||\
Q
1 )\Ml /\Mg
o) - lull”” = == ufe
where g : [0, +00) — R is defined by
+
tP if t<1
t)y=9 -’ - 3.3
9(t) {tp, it t> 1. (3:3)

As ¢ < p~, ®, is bounded from below and coercive. It remains to show that the
functional ®, satisfies the (PS) condition to complete the proof. Let (u,) C X be
a (PS) sequence of ®, in X, that is,

@, (uy,) is bounded and @ (u,,) — 0 in X'. (3.4)

Then, by the coercivity of ®,, the sequence (u,,) is bounded in X. By the reflexivity
of X, for a subsequence still denoted (u,), we have

Uy —u  in WHPE(Q), u, »u in LP@(Q), and  u, — u in LY@ (6Q).

Therefore,

(\(un),un, —u) — 0 and / |t |9 20y, (1, — w)do — 0.
o0

Thus

(A(un), tp —u) == / |V |P® =2V, (Vu, — Vu)dz + / |t |P® =20y, (uy —u)dz — 0.

According to the fact that A satisfies condition (ST) (see [9]), we have u,, — u
in W) (Q). The proof is complete. O
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Lemma 3.4. For each n € N*, there exists H,, € I',, such that

sup @, (u) < 0.
u€Hy,

Proof. Let vy,va,...,v, € C5°(RY) be such that

{x € 0 v;(x) A0} N{x € ONvj(x) #0} =0 if i#j

and
meas({zx € 9Q;v;(z) #0}) >0

fori,5 € {1,2,...,n}. Take F,, = span{vy,ve,...,v,}. It is clear that dim F,, = n and

/ lv(2)]"®do >0 for all v € F, \ {0}.

Denote S = {v € W@ (Q) : |v|| = 1} and H,(t) = t(SN F,) for 0 < t < 1.
Obviously, v(H,(t)) = n for all ¢t € (0, 1].
Now, we show that, for any n € N*, there exists ¢, € (0,1] such that

sup Py (u) <O0.
wEH,, (tn)

Indeed, for 0 < ¢t < 1, we have

sup Pp(u) < sup P,(tv)

wEH,, (t) vESNF,
tp( ) ta(@)

sup 5 (Ivo@ +\v<x>|p<x>)dx—x / @ ds
veESNF, q( )

Q
tp

< sw {2 / (I7o@P + o)) / o) do |
veSﬁFn p
Q
w (i ‘7} )|at@) dg>
P~ gt ‘q*

= sup
vESNF,

Since

m:= min /|v )%® do > 0,
veSNF,

we may choose t,, € (0,1] which is small enough such that

1 A 1 0

This completes the proof. O
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Proof of Theorem 3.1. By Lemmas 3.3, 3.4 and Theorem 3.2, ®, admits a sequence
of nontrivial weak solutions (u, ), such that for any n, we have

up #0, ®\(u,) =0, Px(uy) <0, Jim_w, =0. (3.5)
O
Theorem 3.5. Let p,q € C(Q). If
¢ <p and q" <p?(x) foralzxzecQ, (3.6)
then there exists \* > 0 such that any A € (0, \*) is an eigenvalue for problem (1.1).

For applying Ekeland’s variational principle we start with two auxiliary results.

Lemma 3.6. There exists \* > 0 such that for any A € (0,\*) there exist p,a > 0
such that ®x(u) > a > 0 for any u € X with ||u|| = p.

Proof. Since q(x) < p?(z) for all 2 € Q, it follows that X is continuously embedded
in L9®)(9Q). So, there exists a positive constant C; such that

U] Lo 90y < Chllul|  for all u € X. (3.7)

Fix p € (0,1) such that p < C% Then relation (3.7) implies |u]aw) a0y < 1 for all
u € X with |lu]| = p. Thus,

/|u\q(z)da < \u|‘2;(1)(8m for all w € X with |lu]| = p. (3.8)
o0

Combining (3.7) and (3.8), we obtain

/ |7 de < 9 [ul]© for all u € X with [[ul| = p. (3.9)
o

Hence, from (3.9) we deduce that for any u € X with ||u|| = p, we have
1 () () A ()
or() = — [ (I9ul@ + @) de — 2 [ |u|?@do
p q
Q o9

AU W
R p _ 4 q
= — |l q_01 [[ul

p
D W
=—p" ——Cf p*
pt g !
-1 +_ - A -
=p! (p” =0 )
pt g !
Putting
pt—q~ -
A =2 4 (3.10)

2pt cf
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for any u € X with |lu| = p, there exists a = p?* /(2p*) such that
[03% (u) >a>0.
This completes the proof. O

Lemma 3.7. There exists £ € X such that £ > 0, £ £ 0 and ®(t€) < 0 fort >0
small enough.

Proof. Since ¢~ < p~, there exists €9 > 0 such that
q +eo<p .
Since ¢ € C(Q), there exists an open set A C 9 such that
lg(z) —q¢7| <eo forall ze€ A
Thus, we deduce that
g(x) <q~ +eo<p~ forallze A (3.11)
Take & € C°(RY) such that A C suppé, &(x) = 1forz € Aand 0 < ¢ < 11n Q.

Without loss of generality, we may assume that [|£]| = 1, that is,

/ (|V§|p<$) + \§|P<I))dz ~ 1. (3.12)

Q
By using (3.11), (3.12) and the fact

/ 1€]7®) do = meas(A)
A

for all t € (0,1), we obtain

tr() ta(x)
() :/ (|V£|”(” + Ifl”“”)) dx — A/imqwda
Q a0

p(z) q(x)

P A
< p(z) p(z) _ q(z) | ¢19(2)
< Q/ (Ivelr +1el7@) do = = [ 15 ]el*@do

29
ﬁ _ i/ Q($)|€“Z($)da

IN

P~ gt
A
tP A\t¢ teo

Si_
P qt

meas(A).

1
Then, for any t < §»~ -~ —<0 with 0 < § < min{1, \p~ meas(A)/q*}, we conclude that
CI))\(tf) < 0.

The proof is complete. O
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Proof of Theorem 3.5. By Lemma 3.6, we have

inf ®, >0, (3.13)
9B,(0)
where 0B,(0) = {u € X : ||lu|| = p}.
On the other hand, from Lemma 3.7, there exists £ € X such that ®,(t§) < 0 for
t > 0 small enough. Using (3.9), it follows that

1 A - _
Oy (u) > p—+||u||p+ = O lull™ for w e B,(0).
Thus,
—o0 < ¢y = _inf &) <0,
Bp(o)
Let

0<e< inf ®,— inf ®,.
9B,(0) B,(0)

Then, by applying Ekeland’s variational principle to the functional

3y : B,(0) = R,

there exists u. € B,(0) such that

(I))\(ue) < inf &) + ¢,
B, (0)

Dy (ue) < Dy(u) +eflu —ue]| for u # ue.

Since

‘1))\(“5)< inf &) +e< inf ®,,
B,(0) 0B,(0)

we deduce that u. € B,(0).

Now, define I : B,(0) — R by
In(u) = ®x(u) + ¢llu — ue |-
It is clear that w. is an minimum of I. Therefore, for ¢ > 0 and v € B1(0), we have

Iy (ue + tv) — In(ue)
t

>0

for t > 0 small enough and v € By(0), that is,

D (ue + tv) — Py (ue)
t

+elol =0

for ¢ positive and small enough, and v € B1(0). As t — 0, we obtain

(@) (ue),v) +¢llv]| >0 for all v € B1(0).
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Hence, [|®) (u.)||x: < e. We deduce that there exists a sequence (uy,), C B,(0) such
that

D) (u,) = c, and D)\ (u,) — 0. (3.14)

It is clear that (u,) is bounded in X. By a standard argument and the fact A is type
of (ST1), for a subsequence we obtain u,, — u in X as n — oco. Thus, by (3.14), we
have

Dy(u)=cy, <0 and ®\(u)=0 asn— oco. (3.15)
The proof is complete. O
Theorem 3.8. Let p,q € C(Q). If
pt<q <q" <pP(x) foralzeqQ, (3.16)
then for any A > 0, problem (1.1) possesses a nontrivial weak solution.
We want to construct a mountain geometry, and first need two lemmas.

Lemma 3.9. There exists n,b > 0 such that ®x(u) > b for uw € X with |u|| = 7.

Proof. Since ¢ < p?, in view the Theorem 3.2, there exists M, M, > 0 such that
lul Lot (o) < Mallull and  fulpo— o) < Maul].

Thus, from (3.2) we obtain

1 . " A + -
Ba(w) 2 = [ (IVa(@)" + [u(@)P )do = Z [ llal)” + (el ]
Q
. ]
1 MM +  AMJ] -
> —glllull) = Sl — 22
p q q
et t_p,t AMI - _pt + .
(3 = 2 =" - 22 = Yl il < 1.
- Mt - AME - -
(;—;anp—qzwqp k™ ] > 1.

Since pt < ¢~ < ¢*, the functional h : [0,1] — R defined by

1 M
h(s) = — = = L=s"
p q

+ )\Méf
=

_ —_pt
p s4 p

is positive on the neighbourhood of the origin. So, the result of Lemma 3.9 follows. [

Lemma 3.10. There exists e € X with |le|| > n such that ®x(e) < 0, where n is given
in Lemma 3.9.
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Proof. Choose ¢ € C§°(f2), ¢ > 0 and ¢ # 0. For ¢ > 1, we have

tp
Da(tp) < p—/mo P 1 fola) ) dx——/\ ()" do,
Q o0

Then, since pt < ¢~, we deduce that

tlg]élc D) (ty) = —o0.
Therefore, for t > 1 large enough, there is e = t¢ such that |e]| > n and ®x(e) < 0.
This completes the proof. O

Lemma 3.11. Let p,q € C.(Q). Assume that pT < q~. Then the functional ®)
satisfies the condition (PS).

Proof. Let (u,) C X be a sequence such that M := sup,, ®»(u,) < oo and &) (u,,) — 0
in X’. By contradiction suppose that

|un]] = +o0 asn — oo and ||u,| > 1 for any n.

Thus,

M+ 14 [unll = @x(un) — p= <‘I>A(un),un>

1
- / (|w P o fun )Y — — / (IVun ) + ") de
p(x q
Q Q

Since p* < ¢, this contradicts the fact that p~ > 1. So, the sequence (u,) is bounded
in X and similar arguments as those used in the proof of Lemma 3.4 completes the
proof. O

Proof of Theorem 3.8. From Lemmas 3.9 and 3.10 we deduce that
max(®,(0), Dx(e)) = ©2(0) < inf ®y(u)=: S.

[lull=n

By Lemma 3.11 and the mountain pass theorem, we deduce the existence of critical
points u of @, associated with the critical value given by

c:=1inf sup P (v(¥)) > B, (3.17)
€L ¢e(0,1]
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where
I = {y€ C([0,1], X) : 7(0) = 0 and (1) = }.
This completes the proof. O
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