PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization by the convergence control parameter in iterative methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The classical iterative methods, such as the fixed point iteration, the Adomian decomposition method and the homotopy analysis method are discussed in the present paper. It is proven that adding a convergence control parameter into these makes them powerful and rapidly converging to the true solution, whilst the classical correspondences may fail to or slowly converge to the desired solution. The key is to demonstrate the presence of a continuous interval of the convergence control parameter for the considered problem. This allows convergence of such modified iterative methods with an optimum convergence control parameter obtained from squared residual errors of either the original equation or the derivative of iterative solution with respect to the convergence control parameter.
Rocznik
Strony
105--116
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
  • Department of Mathematics, Hacettepe University, 06532-Beytepe, Ankara, Turkiye ¨ Department of Medical Research, China Medical University Hospital, China Medical University Taichung, Taiwan
Bibliografia
  • 1. Amat, S., & Busquier, S. (2016). Advances in Iterative Methods for Nonlinear Equations. SEMA SIMAI Springer Series, Switzerland.
  • 2. Berinde, V. (2010). Existence and approximation of solutions of some first order iterative differential equations. Miskolc Mathematical Notes, 11, 1,
  • 3. Huang, N., & Ma, C. (2014). Convergence analysis and numerical study of a fixed-point iterative method for solving systems of nonlinear equations. The Scientific World Journal, 2014, 1-10.
  • 4. Bunlue, N., & Suantai, S. (2015). Convergence theorems of fixed point iterative methods defined by admissible functions. Thai Journal of Mathematics, 13, 527-537.
  • 5. Wang, X. (2017). A family of Newton-type iterative methods using some special self-accelerating parameters. International Journal of Computer Mathematics, 95, 10, 2112-2127. DOI: 10.1080/00207160.2017.1366459
  • 6. Adomian, G. (1988). A review of the decomposition method in applied mathematics. Journal of Mathematical Analysis and Applications, 135, 501-544.
  • 7. Song, L., & Wang, W. (2013). A new improved Adomian decomposition method and its application to fractional differential equations. Applied Mathematical Modelli
  • 8. Turkyilmazoglu, M. (2016). Determination of the correct range of physical parameters in the approximate analytical solutions of nonlinear equations using the Adomian decomposition method. Mediterranean Journal of Mathematics, 13, 4019-4037.
  • 9. Turkyilmazoglu, M. (2017). Parametrized Adomian decomposition method with optimum convergence. ACM Transactions on Modeling and Computer Simulation, 27(4).
  • 10. Turkyilmazoglu, M. (2021). Nonlinear problems via a convergence accelerated decomposition method of Adomian. Computer Modeling in Engineering and Sciences, 127, 1-22.
  • 11. Liao, S.J. (2014). Advances in the Homotopy Analysis Method. World Scientific.
  • 12. Liao, S.J. (1995). An approximate solution technique not depending on small parameters: a special example. International Journal of Nonlinear Mechanics, 30, 371-380
  • 13. Liao, S.J. (2003). Beyond Perturbation: Introduction to the Homotopy Analysis Method. Boca Raton: Chapman & Hall / CRC Press.
  • 14. Liao, S.J. (2004). On the homotopy analysis method for nonlinear problems. Applied Mathematics and Computation, 147, 499-513.
  • 15. Liao, S.J. (2010). An optimal homotopy-analysis approach for strongly nonlinear differential equations. Communications in Nonlinear Science and Numerical Simulation, 15, 2003-2016.
  • 16. Turkyilmazoglu, M. (2016). Flow and heat simultaneously induced by two stretchable rotating disks. Physics of Fluids, 28, 043601.
  • 17. Yang, D., & Zhang, W. (2004). Solutions of equivariance for iterative differential equations. Applied Mathematics Letters, 17, 759-765.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6658096d-9f51-4b94-9752-7e598bd174d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.