PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Construction and evaluation of the terahertz human phantom

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Konstrukcja i badania fantomu w zakresie terahercowym
Języki publikacji
EN
Abstrakty
EN
We report on construction and evaluation of a moving wirelessly-controlled thermal phantom for testing cameras working in the terahertz range (0.1-3.0THz). A terahertz camera operating at 0.25 THz and a standard thermal camera were used for tests. We compared the images taken for the phantom and a man and we obtained satisfactory similarities both for naked as well as dressed objects with hidden items (guns, knives, bombs). The temperature stability of the phantom is also sufficient for evaluation of the cameras.
PL
Przedstawiono konstrukcję i badania ruchomego zdalnie sterowanego fantomu termalnego człowieka opracowanego do testów kamer terahercowych (0,1-3,0THz). Do testów użyto kamery terahercowej pracującej w zakresie 0,25THz i kamery termalnej. Uzyskano bardzo dobre podobieństwo pomiędzy obrazami w zakresie THz dla człowieka oraz fantomu oraz satysfakcjonującą stabilność termalną fantomu.
Rocznik
Strony
248--252
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
autor
  • Military University of Technology
autor
  • Military University of Technology
autor
  • Military University of Technology
autor
  • Military University of Technology
autor
  • Military University of Technology
  • Military University of Technology
Bibliografia
  • [1] Kemp, M. C., Millimetre Wave and Terahertz Technology for the Detection of Concealed Threats – A Review, Proceedings of SPIE, 6402 (2006), 64020D
  • [2] Palka, N., THz Reflection Spectroscopy of Explosives Measured by Time Domain Spectroscopy, Acta Physica Polonica A, 120 (2011), 713-715
  • [3] Gatesman, A.J. et al., Terahertz behaviour of optical components and common materials, Proceedings of SPIE, 6212 (2006), 62120E
  • [4] Yun-Shik, L., Principles of Terahertz Science and Technology, New York, Springer (2008)
  • [5] N. Palka et. al., THz Spectroscopy and Imaging in Security Applications, 19th International Conference on Microwaves, Radar and Wireless Communications, (2012), 265-270
  • [6] Heinz E. et. al., Development of Passive Submillimeter-wave Video Imaging Systems for Security Applications, Proceedings of SPIE, 8544 (2012), 854402
  • [7] Cooper, K. B., Dengler, R. J., Llombart, N., Bryllert, T., Chattopadhyay, G., Mehdi, I., Siegel, P. H., An approach for sub-second imaging of concealed objects using terahertz (THz) radar, J. Infrared Millim. Terahz. Waves, 30 (2009), 1297–1307
  • [8] Appleby, R., Wallace, H. B., Standoff detection of weapons and contraband in the 100 GHz to 1 THz region, IEEE Transactions on Antennas and Propagation 55 (2007), 2944– 2956
  • [9] Appleby, R., Wallace, H. B., Standoff detection of weapons and contraband in the 100 GHz to 1 THz region, IEEE Transactions on Antennas and Propagation 55 (2007), 2944– 2956
  • [10] Millivision, website: www.millivision.com
  • [11] ProVision ATD, website: http://www.sds.l-3com.com
  • [12] ThruVision System Ltd., website: www.truvision.com
  • [13] Brijot Imaging Systems Inc., website: www.brijot.com
  • [14] Dill S., Peichl M., Rudolf D., SUMIRAD: a near real-time mmw radiometer imaging system for threat detection in an urban environment, Proceedings of SPIE, 8544 (2012), 854403
  • [15] Alexander N. et al., IMAGINE project – a low cost, high performance, monolithic passive mm-wave imager front-end, Proceedings of SPIE, 8544 (2012), 854404
  • [16] Luukanen, A. et al. Real-time passive terahertz imaging system for standoff concealed weapons imaging, Proceedings of SPIE, 7670 (2010), 767004
  • [17] Bolduc, M., Terroux, M., Marchese, L., Tremblay, B., Savard, É., Doucet, M., Oulachgar, H., Alain, C., Jerominek, H., Bergeron, A., THz imaging and radiometric measurements using a microbolometer-based camera, 36th International Conference on Infrared, Millimeter and Terahertz Waves, 6105155 (2011), 1-2
  • [18] Alekseev, S. I., Ziskin, M. C., Human skin permittivity determined by millimeter wave reflection measurements, Bioelectromagnetics, 28 (2007), 331–339
  • [19] Measurement of minimum resolvable thermal difference (MRTD) of thermal cameras, STANAG 4349, 1995
  • [20] Mann, C.M., A modular and adaptable system architecture for real-time terahertz imaging application, Proceedings of SPIE, 8363 (2012), 8363-26
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6651225d-981a-4767-aede-2b5feb5de110
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.