Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We prove that under a general condition interpolation dimensions of H-sssi process converge in probability to 2−H.The result can be applied to a wideclass of H-sssi processes which includes fractional Brownian motions, (α, β)-fractional stable processes or strictly stable H-sssi processes. Moreover, we prove that for an H-sssi process with continuous sample paths the same general condition implies uniform convergence in probability of sample paths o f fractal interpolations to sample paths of the interpolated process.
Czasopismo
Rocznik
Tom
Strony
171--178
Opis fizyczny
Biblogr. 7 poz.
Twórcy
autor
- Warsaw University of Technology Warsaw, Poland
Bibliografia
- [1] I. Herburt and R. Małysz, On convergence of box dimensions of fractal interpolation processes, Demonstratio Math. 33 (4) (2000), pp. 873-888.
- [2] N. Kôno and M. Maejima, Self-similar processes with stationary increments, Select Papers Workshop, Ithaca, NY (USA), 1990, Progr. Probab. 25 (1991), pp. 275-295.
- [3] G. Samorodnitski and M. Taqqu, Stable Non-Gaussian Random Processes, Stochastic Modeling, Chapman and Hall, New York 1994.
- [4] A. N. Shiryayev, Probability, Springer, 1984.
- [5] K. Takashima, Sample paths properties of ergodic self-similar processes, Osaka J. Math. 26 (1989), pp. 159-189.
- [6] W. Vervaat, Sample paths properties of self-similar processes with stationary increments, Ann. Probab. 13 (1985), pp. 1-27.
- [7] Y. Xiao and H. Lin, Dimension properties of sample paths of self-similar processes, Acta Math. Sinica 10 (3) (1994), pp. 289-300.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-664d1f0d-5bab-4ab8-b402-cc1c1b5f00a1