Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Positively invariant sets play an important role in the theory and applications of dynamical systems. The stability in Lyapunov sense of equilibrium x = 0 is equivalent to the existence of the ellipsoidal positively invariant sets. The constraints on the state and control vectors of dynamical systems can be formulated as polyhedral positively invariant sets in practical engineering problems. Numerical checking method of positive invariance of polyhedral sets is addressed in this paper. The validation of the positively invariant sets can be done by solving LPs which can be easily implemented numerically. The effectiveness of the proposed checking method is illustrated by examples. Compared with the now existing algebraic methods, numerical checking method is attractive and, importantly, easy to be implemented.
Rocznik
Tom
Strony
593--599
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- College of Mathematics and Systems Sciences, Shandong University of Science and Technology, Qingdao Shandong 266590, China
autor
- Maths & Information Technology School, Yuncheng University, Yuncheng Shanxi 044000, China
Bibliografia
- [1] Z. Horváth, Y. Song, and T. Terlaky, “A novel unified approach to invariance conditions for a linear dynamical system”, Appl. Math. Comput. 298, 351–367 (2017).
- [2] Z. Horváth, “On the positivity of matrix-vector products”, Linear Algebra Appl. 393(1), 253–258 (2004).
- [3] A.M. Lyapunov, Stability of motions, Academic Press, New York, 1966.
- [4] F. Blanchini, “Set invariance in control”, Automatica 35(35), 1747–1767 (1999).
- [5] Z. Horváth, Y. Song, and T. Terlaky, Invariance Conditions for Nonlinear Dynamical Systems, Goldengorin B. (eds.), Optimization and Its Applications in Control and Data Sciences: Optimization and Its Applications, vol (115), Springer International Publishing, Cham, 2016.
- [6] G. Bitsoris and M. Vassilaki, “Regulation of continuous-time stochastic systems under state and control constraints”, IFAC-PapersOnLine 50(1), 10666–10671 (2017).
- [7] G. Bitsoris, “On the positive invariance of polyhedral sets for discrete-time systems”, Syst. Control Lett. 11(3), 243–248 (1988).
- [8] G. Bitsoris, “Existence of positively invariant polyhedral sets for continuous-time linear systems”, Control Theory &Advanced Technology 7(3), 407–427 (1991).
- [9] J.C. Hennet, “Discrete time constrained linear systems”, Control Dyn. Syst. 71(6), 157–213 (1995).
- [10] H. Yang, M. Zhou, M. Zhao, and P. Pan, “Nonnegativity, stability analysis of linear discrete-time positive descriptor systems: an optimization approach”, Bull. Pol. Ac.: Tech. 66(1), 23–29 (2018).
- [11] H. Yang and Y. Jia, “New conditions and numerical checking method for the practical stability of fractional order positive discrete-time linear systems”, Int. J. Nonlin. Sci. Num. 20(3), 315–323 (2019).
- [12] T. Kaczorek, “Checking of the positivity of descriptor linear systems with singular pencils”, Arch. Control Sci. 22(1), 77–86 (2012).
- [13] A. Herrero, A. Ramírez, and N. Thome, “An algorithm to check the nonnegativity of singular systems”, Appl. Math. Comput. 189(1), 355–365 (2007).
- [14] P.T. Anh, A. Babiarz, A. Czornik, M. Niezabitowski, S. Siegmund, “Asymptotic properties of discrete linear fractional equations”, Bull. Pol. Ac.: Tech. 67(4), 749–759 (2019).
- [15] Zhu Xianggeng, Li Yuxia, Wu Bo, “Stability analysis of fractional-order Langford systems”, Journal of Shandong University of Science and Technology (Natural Science) 38(3), 65–71 (2019).
- [16] T. Tarczewski, M. Skiwski, L.J. Niewiara, L.M. Grzesiak, “High-performance PMSM servo-drive with constrained state feedback position controller”, Bull. Pol. Ac.: Tech. 66(1), 49–58 (2018).
- [17] Kazunobu Yoshida, Hisashi Kawabe, and Yukio Nishimura, “Simple LP-Type criteria for positively invariant polyhedral sets”, IEEE Trans. Autom. Control 45(1), 98–101 (2000).
- [18] E.B. Castelan and J.C. Hennet, “On invariant polyhedra of continuous-time linear systems”, IEEE Trans. Autom. Control 38(11), 1680–1685 (1993).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66496d6e-a7d6-4dd5-8e6f-4e02e3eb04ca