Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper is devoted to buckling problem of axially compressed shallow cylindrical panels. Governing differential equations of the nonlinear theory of shallow cylindrical shells are analytically solved. Critical stresses and equilibrium paths of the panels with small curvatures are analytically studied. The formula of the critical stresses for almost flat, cylindrical panels is derived. The “shallowness” of the panel is given by the parameter α and formulae are derived for a range of this parameter. The range of values of sectorial angle for these panels is also defined.
Rocznik
Tom
Strony
655--658
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
autor
- Institute of Mathematics, Poznan University of Technology, ul. Piotrowo 3A, 60-965 Poznań, Poland
autor
- Institute of Applied Mechanics, Poznan University of Technology, ul. Jana Pawla II 24, 60-965 Poznań, Poland
Bibliografia
- [1] S.P. Timoshenko and J.M. Gere, Theory of Elastic Stability, McGraw-Hill Book Comp. New York, Toronto, London, 1961.
- [2] J.W. Hutchinson and W.T. Koiter, “Postbuckling theory”, Appl. Mech. Rev. 23, 1353–1356 (1970).
- [3] B. Budiansky, “Theory of buckling and post-buckling behaviour of elastic structures”, Adv. Appl. Mech. 14, 1–65 (1974).
- [4] D.O. Brush and B.O. Almroth, Buckling of Bars, Plates, and Shells, McGraw-Hill Book Comp. New York – Toronto, 1975.
- [5] L.H. Donnell, Beams, Plates and Shells, McGraw-Hill Book Comp. New York, 1976.
- [6] E.I. Grigoluk and V.V. Kabanov, Stability of Shells, Fiz-Mat-Lit, Moscow (in Russian) 1978.
- [7] N. Yamaki, Elastic Stability of Circular Cylindrical Shells. Applied Mathematics and Mechanics, North-Holland, Amsterdam, New York, Oxford, 1984.
- [8] D. Bushnell, Computerized Buckling Analysis of Shells, Martinus Nijhoff, Dordrecht, Boston, Lancaster, 1985.
- [9] J.G. Simitses, “Buckling and postbuckling of imperfect cylindrical shells”, Appl. Mech. Rev. 39, 1517–1524 (1986).
- [10] Z.P. Bažant and L. Cedolin, Stability of Structures, Oxford University Press, New York, Oxford, 1991.
- [11] G.W. Hunt and E.L. Neto, “Maxwell critical loads for axially loaded cylindrical shells”, J. Appl. Mech. T ASME 60, 702–706 (1993).
- [12] J.G. Teng, “Buckling of thin shells: Recent advances and trends”, Appl. Mech. Rev. 49, 263–274 (1996).
- [13] G.J. Lord, A.R. Champneys, and G.W. Hunt, “Computation of localized post buckling in long axially compressed cylindrical shells”, Philos Trans. A Math. Phys. Eng. Sci. 355, 2137–2150 (1997).
- [14] E. Ventsel and T. Krauthammer, Thin Plates and Shells. Theory, Analysis, and Applications, Marcel Dekker Inc., New York, Basel, 2001.
- [15] J.M. Rotter, “Cylindrical shells under axial compression”. In: J.G. Teng, J.M. Rotter (Eds.) Buckling of Thin Metal Shells. Spon Press, Taylor and Francis Group, London, New York, 42–87 (2004).
- [16] N.T.H. Luong and T.H. Tri, “Influence of variable thickness on stability of rectangular plate under compression”, Mech. Res. Commun. 32, 139–146 (2005).
- [17] K. Magnucki, “Lower critical stress analysis of axially compressed cylindrical shells”, Proc. Tenth Intl. Conf. on Civil Structural and Environmental Engineering Computing, B.H.V. Topping (Ed.) Civil-Comp Press, Stirling, Scotland, Paper 52 (2005).
- [18] D. Dębowski, K. Magnucki, and M. Malinowski, “Dynamic stability of a metal foam rectangular plate”, Steel & Composite Structures 10, 151–168 (2010).
- [19] T. Belica, M. Malinowski, and K. Magnucki, “Dynamic stability of an isotropic metal foam cylindrical shell subjected to external pressure and axial compression”, J. Appl. Mech. T ASME 78, Article No 041003 (2011).
- [20] D.E. Moulton and A. Goriely, “Circumferential buckling instability of a growing cylindrical tube”, J. Mech. Phys. Solids 59, 525–537 (2011).
- [21] C. Polat and Y. Calayir, “Nonlinear static and dynamic analysis of shells of revolution”, Mech. Res. Commun. 37, 205–209 (2010).
- [22] K. Magnucki and P. Jasion, “Analytical description of pre-buckling and buckling states of barrelled shells under radial pressure”, Ocean Eng. 58, 217–223 (2013).
- [23] W.T. Koiter, “Buckling and post buckling behaviour of a cylindrical panel under axial compression”, Reports and Transactions National Aeronautical Research Institute 20, 71–84 (1956) (Nat. Aero. Res. Inst. Report No. S476).
- [24] J.M.T. Thompson and G.W. Hunt, A General Theory of Elastic Stability, John Wiley & Sons, London, New York, Sydney, Toronto, 1973.
- [25] E.R. Lancaster, C.R. Calladine, and S.C. Palmer, “Paradoxical buckling behaviour of a thin cylindrical shell under axial compression”, Int. J. Mech. Sci. 42, 843–865 (2000).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-664772f0-5129-40a7-b678-dabb52ba3615