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Abstract. The paper is devoted to buckling problem of axially compressed shallow cylindrical panels. Governing differential equations of the 
nonlinear theory of shallow cylindrical shells are analytically solved. Critical stresses and equilibrium paths of the panels with small curvatures 
are analytically studied. The formula of the critical stresses for almost flat, cylindrical panels is derived. The “shallowness” of the panel is given 
by the parameter ® and formulae are derived for a range of this parameter. The range of values of sectorial angle for these panels is also defined. 
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is a particular structure of this family. The analytic formula 
of the critical stresses for almost flat, cylindrical panels is 
presented.

The main goal of the study consists in analytical formu-
lation of the critical and post critical states for the family of 
shallow – almost flat cylindrical panels with consideration of 
the flat panel.

2. Buckling problem of the shallow  
cylindrical panels

2.1. Analytical solution of the governing equations. The gov-
erning differential equations of the nonlinear theory of shallow 

1. Introduction

The buckling and post buckling problems are investigated from 
more than hundred years. Results of the theoretical, numerical 
and experimental investigations were elaborated in many papers 
and monographs, selected, for example, in chronological order: 
Timoshenko and Gere [1], Hutchinson and Koiter [2], Budian-
sky [3], Brush and Almorth [4], Donnell [5], Grigoluk and Ka-
banov [6], Yamaki [7], Bushnell [8], Simitses  [9], Bažant and 
Cedolin [10], Hunt and Neto [11], Teng [12], Lord et al. [13], 
Ventsel and Krauthammer [14], Rotter [15], Luong and Tri [16]. 
The problem of a lower estimation of critical stress of axially 
compressed shallow cylindrical panels was presented by Mag-
nucki [17]. Buckling problems of plates and shells are at present 
studied. Dębowski et al. [18] theoretically investigated the dy-
namic stability of a metal foam rectangular plate, however Beli-
ca et al. [19] studied the dynamic stability of an isotropic metal 
foam cylindrical shell subjected to external pressure and axial 
compression. Moulton and Goriely [20] presented interesting 
problem of circumferential buckling instability of a cylindrical 
elastic tube under uniform radial external pressure. Polat nad 
Calayir [21] studied geometrically nonlinear static and dynamic 
response of shells of revolution. Magnucki and Jasion [22] ana-
lytically described the pre-buckling, buckling and post-buckling 
states of barrelled shells under pressure.

Koiter [23] indicated to the buckling problem of shallow 
cylindrical panels. Then Thompson and Hunt [24] briefly char-
acterized the problem. Lancaster et al. [25] emphasized the sen-
sitivity of the buckling load to the presence of initial imper-
fections.

The subject of the paper is a family of axially compressed 
shallow cylindrical panels with four edges simply supported 
(Fig. 1). Critical stresses and equilibrium paths of the panels 
are analytically calculated. A rectangular plate as a flat panel 

Fig. 1. Axially compressed shallow-almost flat cylindrical panel
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2 Buckling problem of the shallow cylindrical panels

2.1 Analytical solution of the governing equations

The governing differential equations of the nonlinear theory of shallow cylindrical shells called
the von Kármán-Donnell equations are in the following form

D∇4w = 1
R

∂2F
∂x2 + � (w, F ) ,

∇4F + Et
[
1
R

∂2w
∂x2 + 1

2
� (w,w)

]
= 0

(1)

where:

D = Et3/[12(1− ν2)] − stiffness of bending,
E, ν − constants of material,
t − thickness of the shell,
�(w, F ) = ∂2w

∂x2
∂2F
∂y2

− 2 ∂2w
∂x∂y

∂2F
∂x∂y

+ ∂2w
∂y2

∂2F
∂x2 − nonlinear differential operator,

w(x, y) − deflection of the panel,
F (x, y) − force function (Airy function).

The in-plane forces – intensities:

Nx =
∂2F

∂y2
, Sxy = − ∂2F

∂x∂y
, Ny =

∂2F

∂x2
. (2)

The buckling shape – the deflection of the panels is assumed in the form

w (x, y) = wa sin
mπx

L
sin

nπy

b
, (3)
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5The minimum values of the shallow cylindrical panels 
(0  ∙  ®e  ∙  1) exceed the critical stress of the flat panel – rect-
angular plate (®e  =  0) (Fig. 3). Therefore, the critical stress of 
the flat panel – rectangular plate is a lower estimation of critical 
stresses of perfect shallow cylindrical panels.

3. Conclusions

The mathematical description and solution of buckling and 
post-buckling behaviour of shallow – nearly flat cylindrical 
panels is presented. The expression (7) for stresses includes 
both the flat panel and perfect shallow cylindrical panels. The 
family of shallow shells – almost flat panels is characterized 
by the sectorial angle. The values of the angle are in the range 
0  ∙  ® ∙  ®s. The boundary angle (12) restricts the family of 
shallow shells. The critical stress of the flat panel – rectangular 
plate is a lower estimation of critical stresses of perfect shallow 
cylindrical panels.
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