PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lipid analysis in biological structures - Is time-of-flight secondary ion mass spectrometry a valuable tool in nano-lipidomics?

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: Lipids are crucial biomolecules that confer structural integrity to cell membranes, facilitate signalling and regulate energy dynamics. Dysregulation of lipids is associated with various diseases, including diabetes, chronic inflammation, and neurological and cardiovascular disorders. Objective: This review seeks to critically evaluate recent advancements in lipidomics, particularly concerning membranous nanoparticles such as extracellular vesicles (EVs), and to investigate the analytical potential of time-of-flight secondary ion mass spectrometry (ToF-SIMS) for nanoscale lipid mapping. Methods: A comprehensive literature review was conducted, focusing on mass spectrometry (MS)-based lipidomic methodologies. Particular emphasis was placed on studies utilising ToF-SIMS to image lipid distribution and composition in cells and membrane-bound nanoparticles. While traditional MS techniques are proficient in identifying and quantifying lipids, they lack spatial resolution. ToF-SIMS addresses this limitation by enabling in situ molecular imaging at micrometre scales, revealing lipid heterogeneity within biological structures and providing unique insights into membrane architecture and lipid sorting. A comparative evaluation highlights both the strengths (e.g., spatial accuracy) and limitations (e.g., challenges in quantification) of ToF-SIMS in relation to alternative methods. Conclusions: ToF-SIMS introduces a critical spatial dimension to lipidomics, bridging conventional bulk analysis with nano-lipidomic imaging. Its integration with complementary techniques holds promise for novel insights into lipid biology, biomarker discovery, and translational applications in diagnostics and drug delivery.
Twórcy
  • Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University; Lojasiewicza street 11, 30-348 Kraków, Poland
Bibliografia
  • 1. Navas-Iglesias N, Carrasco-Pancorbo A, Cuadros-Rodríguez L. From lipids analysis towards lipidomics: a new challenge for the analytical chemistry of the 21st century. Part II: Analytical lipidomics. Trends Anal Chem. 2009 Apr;28(4):393-403. doi: https://doi.org/10.1016/j.trac.2008.12.004.
  • 2. Christie WW. Lipid analysis: isolation, separation, identification, and structural analysis of lipids. 2nd ed. Oxford: Pergamon Press; 1982.
  • 3. Kates M. Techniques of lipidology: isolation, analysis and identification of lipids. 2nd rev ed. Amsterdam: Elsevier; 1986.
  • 4. Cooper GM. The Cell: A Molecular Approach. 2nd ed. Sunderland (MA): Sinauer Associates; 2000.
  • 5. Johansson B. ToF-SIMS imaging of lipids in cell membranes. Surf Interface Anal. 2006 Nov;38(11):1401-12. doi: https://doi.org/10.1002/sia.2403.
  • 6. Fernandis AZ, Wenk MR. Membrane lipids as signaling molecules. Curr Opin Lipidol. 2007 Apr;18(2):121-8. doi: https://doi.org/10.1097/MOL.0b013e328082e4d5.
  • 7. Stryer L. Biochemia. Warszawa: PWN; 2003.
  • 8. McCusker MM, Grant-Kels JM. Healing fats of the skin: the structural and immunologic roles of the omega-6 and omega-3 fatty acids. Clin Dermatol. 2010 Jul-Aug;28(4):440-51. doi: https://doi.org/10.1016/j.clindermatol.2010.03.020.
  • 9. Nicolaou A. Eicosanoids in skin inflammation. Prostaglandins Leukot Essent Fatty Acids. 2013 Jan;88(1):131-8. doi: https://doi.org/10.1016/j.plefa.2012.04.005.
  • 10. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008 Feb;9(2):112-24. doi: https://doi.org/10.1038/nrm2330.
  • 11. Holthuis JCM, Levine TP. Lipid traffic: floppy drives and a superhighway. Nat Rev Mol Cell Biol. 2005 Mar;6(3):209-20. doi: https://doi.org/10.1038/nrm1591.
  • 12. Fadeel B, Xue D. The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit Rev Biochem Mol Biol. 2009;44(5):264-77. doi: https://doi.org/10.1080/10409230903193307.
  • 13. Skotland T, Hessvik NP, Sandvig K, Llorente A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J Lipid Res. 2019 Jan;60(1):9-18. doi: https://doi.org/10.1194/jlr.R084343.
  • 14. Viegas C, Seck F, Fonte P. An insight on lipid nanoparticles for therapeutic proteins delivery. J Drug Deliv Sci Technol. 2022;77:103839. doi: https://doi.org/10.1016/j.jddst.2022.103839.
  • 15. Mehta M, Bui TA, Yang X, Aksoy Y, Goldys EM, Deng W. Lipid-based nanoparticles for drug/gene delivery: an overview of the production techniques and difficulties encountered in their industrial development. ACS Mater Au. 2023 Nov;3(6):600-19. doi: https://doi.org/10.1021/acsmaterialsau.3c00029.
  • 16. Wang EC, Wang AZ. Nanoparticles and their applications in cell and molecular biology. Integr Biol (Camb). 2014 Jan;6(1):9-26. doi: https://doi.org/10.1039/c3ib40165k.
  • 17. Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci. 2018 Aug;13(4):288-303. doi: https://doi.org/10.4103/1735-5362.236858.
  • 18. López KL, Ravasio A, González-Aramundiz JV, Zacconi FC. Solid lipid nanoparticles and nanostructured lipid carriers prepared by microwave and ultrasound-assisted synthesis: promising green strategies for the nanoworld. Pharmaceutics. 2023 May;15(5):1343. doi: https://doi.org/10.3390/pharmaceutics15051343.
  • 19. Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother. 2018 May;103:598-613. doi: https://doi.org/10.1016/j.biopha.2018.04.055.
  • 20. Dhiman N, Awasthi R, Sharma B, Kharkwal H, Kulkarni GT. Lipid nanoparticles as carriers for bioactive delivery. Front Chem. 2021;9:691136. doi: https://doi.org/10.3389/fchem.2021.691136.
  • 21. Mirahadi M, Ghanbarzadeh S, Ghorbani M, Gholizadeh A, Hamishehkar H. A review on the role of lipid-based nanoparticles in medical diagnosis and imaging. Ther Deliv. 2018 Aug;9(8):557-69. doi: https://doi. org/10.4155/tde-2018-0011.
  • 22. Ghadami S, Dellinger K. The lipid composition of extracellular vesicles: applications in diagnostics and therapeutic delivery. Front Mol Biosci. 2023 Jul;10:1208161. doi: https://doi.org/10.3389/fmolb.2023.1208161.
  • 23. Doyle L, Wang M. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019 Jul;8(7):727. doi: https://doi.org/10.3390/cells8070727.
  • 24. Skalska ME, Durak-Kozica M, Stępień EŁ. ToF-SIMS revealing sphingolipids composition in extracellular vesicles and paternal β-cells after persistent hyperglycemia. Talanta. 2026 Jan;297:128582. doi: https://doi.org/10.1016/j.talanta.2025.128582.
  • 25. Yáñez-Mó M, Siljander PRM, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015 May;4:27066. doi: https://doi.org/10.3402/jev.v4.27066.
  • 26. Kim DK, Lee J, Kim SR, Choi DS, Yoon YJ, Kim JH, et al. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics. 2015 Mar 15;31(6):933-9. doi: https://doi.org/10.1093/bioinformatics/btu741.
  • 27. Kumar MA, Baba SK, Sadida HQ, Al Marzooqi S, Jerobin J, Altemani FH, et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther. 2024;9(1):27. doi: https://doi.org/10.1038/ s41392-023-01726-1.
  • 28. Raghav A, Singh M, Jeong GB, Giri R, Agarwal S, Kala S, et al. Extracellular vesicles in neurodegenerative diseases: a systematic review. Front Mol Neurosci. 2022;15:1061076. doi: https://doi.org/10.3389/fnmol.2022.1061076.
  • 29. Zhang Y, Liang F, Zhang D, Qi S, Liu Y. Metabolites as extracellular vesicle cargo in health, cancer, pleural effusion, and cardiovascular diseases: an emerging field of study for diagnostic and therapeutic purposes. Biomed Pharmacother. 2023 Sep;157:114046. doi: https://doi.org/10.1016/j.biopha.2022.114046.
  • 30. Ciregia F, Urbani A, Palmisano G. Extracellular vesicles in brain tumors and neurodegenerative diseases. Front Mol Neurosci. 2017;10:276. doi: https://doi.org/10.3389/fnmol.2017.00276.
  • 31. Mosquera-Heredia MI, Morales LC, Vidal OM, Barceló E, Silvera-Redondo C, Vélez JI, et al. Exosomes: potential disease biomarkers and new therapeutic targets. Biomedicines. 2021 Aug;9(8):1031. doi: https://doi.org/10.3390/biomedicines9081031.
  • 32. Perpiñá-Clérigues C, Mellado S, Català-Senent JF, Ibáñez F, Costa P, Marcos M, et al. Lipidomic landscape of circulating extracellular vesicles isolated from adolescents exposed to ethanol intoxication: a sex difference study. Biol Sex Differ. 2023 Apr;14(1):22. doi: https://doi.org/10.1186/ s13293-023-00502-1.
  • 33. Fyfe J, Casari I, Manfredi M, Falasca M. Role of lipid signalling in extracellular vesicles-mediated cell-to-cell communication. Cytokine Growth Factor Rev. 2023;73:20-6. doi: https://doi.org/10.1016/j.cytogfr.2023.03.004.
  • 34. Murphy SA, Nicolaou A. Lipidomics applications in health, disease and nutrition research. Mol Nutr Food Res. 2013 Aug;57(8):1336-46. doi: https://doi.org/10.1002/mnfr.201200790.
  • 35. Gross RW, Han X. Lipidomics at the interface of structure and function in systems biology. Chem Biol. 2011 Mar;18(3):284-91. doi: https://doi.org/10.1016/j.chembiol.2011.02.011.
  • 36. Wenk MR. Lipidomics: new tools and applications. Cell. 2010 Dec;143(6):888-95. doi: https://doi.org/10.1016/j.cell.2010.11.033.
  • 37. Ghadami S, Dellinger K. The lipid composition of extracellular vesicles: applications in diagnostics and therapeutic delivery. Front Mol Biosci. 2023;10:1208161. doi: https://doi.org/10.3389/fmolb.2023.1208161.
  • 38. Watson AD. Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. doi: https://doi.org/10.1194/jlr.R600002-JLR200.
  • 39. Bou Khalil M, Hou W, Zhou H, Elisma F, Swayne LA, Blanchard AP, et al. Lipidomics era: accomplishments and challenges. Mass Spectrom Rev. 2010 Nov-Dec;29(6):877-929. doi: https://doi.org/10.1002/mas.20294.
  • 40. Wolf C, Quinn PJ. Lipidomics: practical aspects and applications. Prog Lipid Res. 2008 Jan;47(1):15-36. doi: https://doi.org/10.1016/j.plipres.2007.09.001.
  • 41. Massey KA, Nicolaou A. Lipidomics of oxidized polyunsaturated fatty acids. Free Radic Biol Med. 2013 Jun;59:45-55. doi: https://doi.org/10.1016/j.freeradbiomed.2012.08.565.
  • 42. Hulbert AJ, Turner N, Storlien LH, Else PL. Dietary fats and membrane function: implications for metabolism and disease. Biol Rev Camb Philos Soc. 2005 Feb;80(1):155-69. doi: https://doi.org/10.1017/S1464793104006578.
  • 43. Decsi T, Csabi G, Torok K, Erhardt E, Minda H, Burus I, et al. Polyunsaturated fatty acids in plasma lipids of obese children with and without metabolic cardiovascular syndrome. Lipids. 2000 Nov;35(11):1179-84. doi: https://doi.org/10.1007/s11745-000-0626-8.
  • 44. Han X, Gross RW. The foundations and development of lipidomics. J Lipid Res. 2022 Feb;63(2):100164. doi: https://doi.org/10.1016/j.jlr.2021.100164.
  • 45. Han X. Lipidomics for studying metabolism. Nat Rev Endocrinol. 2016 Jul;12(11):668-79. doi: https://doi.org/10.1038/nrendo.2016.98.
  • 46. Ahluwalia K, Ebright B, Chow K, Dave P, Mead A, Poblete R, et al. Lipidomics in understanding pathophysiology and pharmacologic effects in inflammatory diseases: considerations for drug development. Metabolites. 2022 Apr;12(4):323. doi: https://doi.org/10.3390/metabo12040323.
  • 47. Su H, Rustam YH, Masters CL, Makalic E, McLean CA, Hill AF, et al. Characterization of brain-derived extracellular vesicle lipids in Alzheimer’s disease. J Extracell Vesicles. 2021 May;10(7):e12089. doi: https://doi.org/10.1002/jev2.12089.
  • 48. de Freitas RCC, Hirata RDC, Hirata MH, Aikawa E. Circulating extracellular vesicles as biomarkers and drug delivery vehicles in cardiovascular diseases. Biomolecules. 2021 Mar;11(3):388. doi: https://doi.org/10.3390/biom11030388.
  • 49. Al Abdullah S, Cocklereece I, Dellinger K. Unlocking the potential of circulating small extracellular vesicles in neurodegenerative disease through targeted biomarkers and advancements in biosensing. Explor BioMat-X. 2024;1(2):100-23. doi: https://doi.org/10.37349/biomatx.2024.00008.
  • 50. Zhou E, Li Y, Wu F, Guo M, Xu J, Wang S, et al. Circulating extracellular vesicles are effective biomarkers for predicting response to cancer therapy. EBioMedicine. 2021 May;67:103365. doi: https://doi.org/10.1016/j.ebiom.2021.103365.
  • 51. Garcia-Contreras M, Thakor AS. Extracellular vesicles in Alzheimer’s disease: from pathology to therapeutic approaches. Neural Regen Res. 2023 Jan;18(1):18-22. doi: https://doi.org/10.4103/1673-5374.345471.
  • 52. Khoury S, Canlet C, Lacroix MZ, Berdeaux O, Jouhet J, Bertrand-Michel J. Quantification of lipids: model, reality, and compromise. Biomolecules. 2018 Dec;8(4):174. doi: https://doi.org/10.3390/biom8040174.
  • 53. Saini RK, Prasad P, Shang X, Keum YS. Advances in lipid extraction methods: a review. Int J Mol Sci. 2021 Dec;22(24):13663. doi: https://doi. org/10.3390/ijms222413663.
  • 54. Duché G, Sanderson JM. The chemical reactivity of membrane lipids. Chem Rev. 2024 Mar;124(6):3284-330. doi: https://doi.org/10.1021/acs.chemrev.3c00516.
  • 55. Fam TK, Klymchenko AS, Collot M. Recent advances in fluorescent probes for lipid droplets. Materials (Basel). 2018 Sep;11(9):1768. doi: https://doi.org/10.3390/ma11091768.
  • 56. Stoll LL, Spector AA. Changes in serum influence the fatty acid composition of established cell lines. In Vitro. 1984 Sep;20(9):732-8. doi: https://doi.org/10.1007/BF02618896.
  • 57. Yang K, Han X. Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem Sci. 2016 Nov;41(11):954-69. doi: https://doi.org/10.1016/j.tibs.2016.08.010.
  • 58. Li L, Han J, Wang Z, Liu J, Wei J, Xiong S, et al. Mass spectrometry methodology in lipid analysis. Int J Mol Sci. 2014 Jun;15(6):10492-507. doi: https://doi.org/10.3390/ijms150610492.
  • 59. Skotland T, Sagini K, Sandvig K, Llorente A. An emerging focus on lipids in extracellular vesicles. Adv Drug Deliv Rev. 2020 Aug;159:308-21. doi: https://doi.org/10.1016/j.addr.2020.01.003.
  • 60. Sancho-Albero M, Jarne C, Savirón M, Martín-Duque P, Membrado L, Cebolla VL, et al. High-performance thin-layer chromatography-densitometry-tandem ESI-MS to evaluate phospholipid content in exosomes of cancer cells. Int J Mol Sci. 2022 Jan;23(3):1281. doi: https://doi. org/10.3390/ijms23031281.
  • 61. Liangsupree T, Multia E, Saarinen J, Ruiz-Jimenez J, Kemell M, Riekkola ML. Raman spectroscopy combined with comprehensive gas chromatography for label-free characterization of plasma-derived extracellular vesicle subpopulations. Anal Biochem. 2022 Jun;647:114672. doi: https://doi.org/10.1016/j.ab.2022.114672.
  • 62. Imanbekova M, Suarasan S, Rojalin T, Mizenko RR, Hilt S, Mathur M, et al. Identification of amyloid beta in small extracellular vesicles via Raman spectroscopy. Nanoscale Adv. 2021 Jul;3(14):4119-32. doi: https://doi.org/10.1039/D1NA00300H.
  • 63. Johnson KR, Ellis G, Toothill C. The sulfophosphovanillin reaction for serum lipids: a reappraisal. Clin Chem. 1977 Sep;23(9):1669–78. doi: https://doi.org/10.1093/clinchem/23.9.1669.
  • 64. Ullah MS, Zhivonitko VV, Samoylenko A, Zhyvolozhnyi A, Viitala S, Kankaanpää S, et al. Identification of extracellular nanoparticle subsets by nuclear magnetic resonance. Chem Sci. 2021 Jun;12(24):8311-9. doi: https://doi.org/10.1039/D1SC01313A.
  • 65. Jakubec M, Maple-Grødem J, Akbari S, Nesse S, Halskau Ø, Mork-Jansson AE. Plasma-derived exosome-like vesicles are enriched in lysophospholipids and pass the blood–brain barrier. PLoS One. 2020 Sep;15(9):e0232442. doi: https://doi.org/10.1371/journal.pone.0232442.
  • 66. Bai L, Bu F, Li X, Zhang S, Min L. Mass spectrometry-based extracellular vesicle micromolecule detection in cancer biomarker discovery: an overview of metabolomics and lipidomics. View (Beijing). 2023 Oct;4(5):20220086. doi: https://doi.org/10.1002/viw.20220086.
  • 67. Züllig T, Trötzmüller M, Köfeler HC. Lipidomics from sample preparation to data analysis: a primer. Anal Bioanal Chem. 2020 Apr;412(10):2191-209. doi: https://doi.org/10.1007/s00216-019-02241-7.
  • 68. Huang T, He J. Characterization of extracellular vesicles by size-exclusion high-performance liquid chromatography (HPLC). Methods Mol Biol. 2017;1660:191-9. doi: https://doi.org/10.1007/978-1-4939-7253-1_16.
  • 69. Lam SM, Zhang C, Wang Z, Ni Z, Zhang S, Yang S, et al. A multi-omics investigation of the composition and function of extracellular vesicles along the temporal trajectory of COVID-19. Nat Metab. 2021 Jul;3(7):909-22. doi: https://doi.org/10.1038/s42255-021-00405-6.
  • 70. Peterka O, Jirásko R, Chocholoušková M, Kuchař L, Wolrab D, Hájek R, et al. Lipidomic characterization of exosomes isolated from human plasma using various mass spectrometry techniques. Biochim Biophys Acta Mol Cell Biol Lipids. 2020 May;1865(5):158634. doi: https://doi. org/10.1016/j.bbalip.2020.158634.
  • 71. Aresta AM, De Vietro N, Zambonin C. Analysis and characterization of the extracellular vesicles released in non-cancer diseases using matrix-assisted laser desorption ionization/mass spectrometry. Int J Mol Sci. 2024 Apr;25(8):3952. doi: https://doi.org/10.3390/ijms25083952.
  • 72. Lobasso S, Tanzarella P, Mannavola F, Tucci M, Silvestris F, Felici C, et al. A lipidomic approach to identify potential biomarkers in exosomes from melanoma cells with different metastatic potential. Front Physiol. 2021;12:748895. doi: https://doi.org/10.3389/fphys.2021.748895.
  • 73. Lydic TA, Townsend S, Adda CG, Collins C, Mathivanan S, Reid GE. Rapid and comprehensive ‘shotgun’ lipidome profiling of colorectal cancer cell derived exosomes. Methods. 2015 Oct;87:83-95. doi: https://doi.org/10.1016/j.ymeth.2015.05.014.
  • 74. Byrdwell WC. Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids. 2001 Apr;36(4):327-46. doi: https://doi.org/10.1007/s11745-001-0731-6.
  • 75. Wang C, Wang M, Han X. Applications of mass spectrometry for cellular lipid analysis. Mol Biosyst. 2015 Mar;11(3):698-713. doi: https://doi.org/10.1039/C4MB00607B.
  • 76. Dill AL, Ifa DR, Manicke NE, Ouyang Z, Cooks RG. Mass spectrometric imaging of lipids using desorption electrospray ionization. J Chromatogr B Analyt Technol Biomed Life Sci. 2009 Sep;877(26):2883-9. doi: https://doi.org/10.1016/j.jchromb.2009.03.043.
  • 77. Morris CB, Poland JC, May JC, McLean JA. Fundamentals of ion mobility- mass spectrometry for the analysis of biomolecules. In: Paglia G, Astarita G. editors. Ion Mobility-Mass Spectrometry: Methods and Protocols. New York: Springer; 2020. p. 1-31. doi: https://doi.org/10.1007/978-1-0716-0161-1_1.
  • 78. Li M, Yang L, Bai Y, Liu H. Analytical methods in lipidomics and their applications. Anal Chem. 2014 Jan;86(1):161-75. doi: https://doi.org/10.1021/ac403852f.
  • 79. Jia F, Zhao X, Zhao Y. Advancements in ToF-SIMS imaging for life sciences. Front Chem. 2023 Aug;11:1237408. doi: https://doi.org/10.3389/fchem.2023.1237408.
  • 80. Sakamoto T, Koizumi M, Kawasaki J, Yamaguchi J. Development of a high lateral resolution TOF-SIMS apparatus for single particle analysis. Appl Surf Sci. 2008 Nov;255(4):1617-20. doi: https://doi.org/10.1016/j.apsusc.2008.06.166.
  • 81. Graham DJ, Gamble LJ. Back to the basics of time-of-flight secondary ion mass spectrometry data analysis of bio-related samples. II. Data processing and display. Biointerphases. 2023 May;18(3):031004. doi: https://doi.org/10.1116/6.0002917.
  • 82. Yoon S, Lee TG. Biological tissue sample preparation for time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging. Nano Converg. 2018;5(1):24. doi: https://doi.org/10.1186/s40580-018-0154-5.
  • 83. Marzec ME, Wojtysiak D, Połtowicz K, Nowak J, Pedrys R. Study of cholesterol and vitamin E levels in broiler meat from different feeding regimens by TOF-SIMS. Biointerphases. 2016 Apr;11(2):02A326. doi: https://doi.org/10.1116/1.4944749.
  • 84. Passarelli MK, Winograd N. Lipid imaging with time-of-flight secondary ion mass spectrometry (ToF-SIMS). Biochim Biophys Acta. 2011 Nov;1811(11):976-90. doi: https://doi.org/10.1016/j.bbalip.2011.06.021.
  • 85. McMahon JM, Short RT, McCandlish CA, Brenna JT, Todd PJ. Identification and mapping of phosphocholine in animal tissue by static secondary ion mass spectrometry and tandem mass spectrometry. Rapid Commun Mass Spectrom. 1996 Mar;10(3):335-40. doi: https://doi.org/10.1002/(SICI)1097-0231(19960315)10:33.0.CO;2-B.
  • 86. Seedorf U, Fobker M, Voss R, Meyer K, Kannenberg F, Meschede D, et al. Smith-Lemli-Opitz syndrome diagnosed by using time-of-flight secondary-ion mass spectrometry. Clin Chem. 1995 Apr;41(4):548-52. doi: https://doi.org/10.1093/clinchem/41.4.548.
  • 87. Börner K, Malmberg P, Månsson JE, Nygren H. Molecular imaging of lipids in cells and tissues. Int J Mass Spectrom. 2007 Feb;260(2-3):128-36. doi: https://doi.org/10.1016/j.ijms.2006.09.010.
  • 88. Touboul D, Roy S, Germain DP, Chaminade P, Brunelle A, Laprévote O. MALDI-TOF and cluster-TOF-SIMS imaging of Fabry disease biomarkers. Int J Mass Spectrom. 2007 Feb;260(2-3):158-65. doi: https://doi.org/10.1016/j.ijms.2006.10.007.
  • 89. Pacholski ML, Cannon DM Jr, Ewing AG, Winograd N. Static time-of- -flight secondary ion mass spectrometry imaging of freeze-fractured, frozen-hydrated biological membranes. Rapid Commun Mass Spectrom. 1998;12(18):1232-5. doi: https://doi.org/10.1002/(SICI)1097-0231(19980830)12:183.0.CO;2-J.
  • 90. Nygren H, Börner K, Hagenhoff B, Malmberg P, Månsson JE. Localization of cholesterol, phosphocholine and galactosylceramide in rat cerebellar cortex with imaging TOF-SIMS equipped with a bismuth cluster ion source. Biochim Biophys Acta. 2005 Dec;1737(2-3):102-10. doi: https://doi.org/10.1016/j.bbalip.2005.10.004.
  • 91. Touboul D, Brunelle A, Halgand F, De La Porte S, Laprévote O. Lipid imaging by gold cluster time-of-flight secondary ion mass spectrometry: application to Duchenne muscular dystrophy. J Lipid Res. 2005 Jul;46(7):1388-95. doi: https://doi.org/10.1194/jlr.M400473-JLR200.
  • 92. Prinz C, Hook F, Malm J, Sjövall P. Structural effects in the analysis of supported lipid bilayers by time-of-flight secondary ion mass spectrometry. Langmuir. 2007 Jul;23(15):8035-41. doi: https://doi.org/10.1021/la700803m.
  • 93. Ostrowski SG, Szakal C, Kozole J, Roddy TP, Xu J, Ewing AG, et al. Secondary ion MS imaging of lipids in picoliter vials with a buckminsterfullerene ion source. Anal Chem. 2005 Oct;77(19):6190-6. doi: https://doi.org/10.1021/ac050828p.
  • 94. Touboul D, Kollmer F, Niehuis E, Brunelle A, Laprévote O. Improvement of biological time-of-flight secondary ion mass spectrometry imaging with a bismuth cluster ion source. J Am Soc Mass Spectrom. 2005 Oct;16(10):1608-18. doi: https://doi.org/10.1016/j.jasms.2005.04.032.
  • 95. Monroe EB, Jurchen JC, Lee J, Rubakhin SS, Sweedler JV. Vitamin E imaging and localization in the neuronal membrane. J Am Chem Soc. 2005 Sep;127(35):12152-3. doi: https://doi.org/10.1021/ja053576v.
  • 96. Amemiya T, Tozu M, Ohashi Y. Time-of-flight secondary ion mass spectrometry can replace histochemistry demonstration of fatty acids in the retina. Jpn J Ophthalmol. 2004 May;48(3):287-93. doi: https://doi.org/10.1016/j.jjo.2004.02.001.
  • 97. Song Z, Wang Z, Zhao H, Cai L, Li Z, Zhang S, et al. Metabolic fingerprinting of cell types in mouse skeletal muscle by combining TOF-SIMS with immunofluorescence staining. Analyst. 2020 Nov;145(21):6901-9. doi: https://doi.org/10.1039/D0AN01226A.
  • 98. Marzec ME, Wojtysiak D, Połtowicz K, Nowak J. ToF-SIMS spectrometry to observe fatty acid profiles of breast tissues in broiler chicken subjected to varied vegetable oil diet. J Mass Spectrom. 2020 Mar;55(3):e4476. doi: https://doi.org/10.1002/jms.4476.
  • 99. Ren J, Li HW, Chen L, Zhang M, Liu YX, Zhang BW, et al. Mass spectrometry imaging-based single-cell lipidomics profiles metabolic signatures of heart failure. Research (Wash D C). 2023 Jan;6:0048. doi: https://doi.org/10.34133/research.0048.
  • 100. Jia F, Zhao X, Zhao Y. Advancements in ToF-SIMS imaging for life sciences. Front Chem. 2023 Aug;11:1237408. doi: https://doi.org/10.3389/fchem.2023.1237408.
  • 101. Kim Y, Shon HK, Shin SK, Lee TG. Probing nanoparticles and nanoparticle-conjugated biomolecules using time-of-flight secondary ion mass spectrometry. Mass Spectrom Rev. 2015 Apr;34(2):237-47. doi: https://doi.org/10.1002/mas.21416.
  • 102. Wu K, Jia F, Zheng W, Luo Q, Zhao Y, Wang F. Visualization of metallodrugs in single cells by secondary ion mass spectrometry imaging. J Biol Inorg Chem. 2017 Jul;22(5):653-61. doi: https://doi.org/10.1007/ s00775-017-1442-8.
  • 103. Marzec ME, Rząca C, Moskal P, Stępień EŁ. Study of the influence of hyperglycemia on the abundance of amino acids, fatty acids, and selected lipids in extracellular vesicles using ToF-SIMS. Biochem Biophys Res Commun. 2022 Sep;622:30-6. doi: https://doi.org/10.1016/j. bbrc.2022.06.076.
  • 104. Chetwynd AJ, Lynch I. The rise of the nanomaterial metabolite corona, and emergence of the complete corona. Environ Sci Nano. 2020 Apr;7(4):1041-60. doi: https://doi.org/10.1039/C9EN00993J.
  • 105. González-García LE, MacGregor MN, Visalakshan RM, Lazarian A, Cavallaro AA, Morsbach S, et al. Nanoparticles surface chemistry influence on protein corona composition and inflammatory responses. Nanomaterials (Basel). 2022 Feb;12(4):682. doi: https://doi.org/10.3390/ nano12040682.
  • 106. Graham DJ, Wilson JT, Lai JJ, Stayton PS, Castner DG. Three-dimensional localization of polymer nanoparticles in cells using ToF-SIMS. Biointerphases. 2016 Jun;11(2):02A301. doi: https://doi.org/10.1116/1.4943168.
  • 107. Belu AM, Davies MC, Newton JM, Patel N. TOF-SIMS characterization and imaging of controlled-release drug delivery systems. Anal Chem. 2000 Nov;72(22):5625-38. doi: https://doi.org/10.1021/ac000450+.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-664729a2-f754-4620-b13e-e30e200a5005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.