PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An investigation into the effect of alloying elements on corrosion behavior of severely deformed Cu-Sn alloys by equal channel angular pressing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To overcome some possible deficiencies of pure copper, dilute alloying and employment of equal channel angular pressing seem the cost-effective solutions. In this work, dilute copper alloys with the tin amount of 0.18, 0.3, and 0.5 wt.% were obtained with continuous casting and subsequently, they were subjected to ECAP process up to four passes. It was shown that integrated treatment by dilute alloying and ECAP lead to 182% improvement of the corrosion resistance as compared to the as-received condition due to the grain refinement. Meanwhile, the alloying impact on current density is decreased with the ECAP process which may result from the changes at the distribution of Sn atoms in Cu. The difference in measured corrosion current density of unprocessed and ECAPed samples for the alloys Cu-0.3%Sn and Cu-0.5%Sn are 15% and 2%, respectively. The corrosion improvement by means of current density reduction due to the alloying before the ECAP process is about 45% while this value after the ECAP diminishes to 35%. Microstructure analysis showed that four passes of ECAP process cause the average grain size of the pure copper to less than 700 nm and the Cu-0.5%Sn to about 550 nm. Also, the HAGBs fraction of the ECAPed pure Cu is 74%, while the correspond-ing magnitude for the Cu-0.5%Sn is 78%.
Rocznik
Strony
842--850
Opis fizyczny
Bibliogr. 54 poz., rys., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Faculty of Engineering, University of Maragheh, P.O. Box 55136-533, Maragheh, Iran
  • School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
autor
  • Department of Materials Science and Engineering, Imam Khomeini International University, Qazvin, Iran
autor
  • School of Denizli Vocational Technology, Program of Machine, Pamukkale University, Denizli, Turkey
autor
  • Department of Materials Science and Engineering, Imam Khomeini International University, Qazvin, Iran
  • Department of Mechanical Engineering, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
Bibliografia
  • [1] R. Valiev, Nanostructuring of metallic materials by SPD processing for advanced properties, Nat. Mater. 3 (2004) 511–516. , http://dx.doi.org/10.3139/146.110095.
  • [2] V. Segal, Review: Modes and processes of severe plastic deformation (SPD), Materials (Basel) 11 (2018), http://dx.doi. org/10.3390/ma11071175.
  • [3] H. Pouraliakbar, S. Firooz, M.R. Jandaghi, G. Khalaj, A. Amirafshar, Combined effect of heat treatment and rolling on pre-strained and SPDed aluminum sheet, Mater. Sci. Eng. A 612 (2014) 371–379. , http://dx.doi.org/10.1016/j.msea.2014.06.044.
  • [4] M. Ebrahimi, M.H. Shaeri, C. Gode, H. Armoon, M. Shamsborhan, The synergistic effect of dilute alloying and nanostructuring of copper on the improvement of mechanical and tribological response, Compos. B Eng. 164 (2019) 508–516. , http://dx.doi.org/10.1016/j.compositesb.2019.01.077.
  • [5] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893–979. , http://dx.doi.org/10.1016/j. pmatsci.2008.03.002.
  • [6] S.A. Hosseini, H.D. Manesh, High-strength, high-conductivity ultra-fine grains commercial pure copper produced by ARB process, Mater. Des. 30 (2009) 2911–2918. , http://dx.doi.org/ 10.1016/j.matdes.2009.01.012.
  • [7] H. Pouraliakbar, M.R. Jandaghi, A. Heidarzadeh, M.M. Jandaghi, Constrained groove pressing, cold-rolling, and post- deformation isothermal annealing: consequences of their synergy on material behavior, Mater. Chem. Phys. 206 (2018) 85–93. , http://dx.doi.org/10.1016/j.matchemphys.2017.12.010.
  • [8] M. Ebrahimi, S. Attarilar, F. Djavanroodi, C. Gode, H.S. Kim, Wear properties of brass samples subjected to constrained groove pressing process, Mater. Des. 63 (2014) 531–537. , http://dx.doi.org/10.1016/j.matdes.2014.06.043.
  • [9] M. Ebrahimi, H. Gholipour, F. Djavanroodi, A study on the capability of equal channel forward extrusion process, Mater. Sci. Eng. A 650 (2015) 1–7. , http://dx.doi.org/10.1016/j. msea.2015.10.014.
  • [10] M.R. Jandaghi, H. Pouraliakbar, M.K.G. Shiran, G. Khalaj, M. Shirazi, On the effect of non-isothermal annealing and multi-directional forging on the microstructural evolutions and correlated mechanical and electrical characteristics of hot-deformed Al-Mg alloy, Mater. Sci. Eng. A 657 (2016) 431–440. , http://dx.doi.org/10.1016/j. msea.2016.01.056.
  • [11] F. Djavanroodi, M. Ebrahimi, J.F. Nayfeh, Tribological and mechanical investigation of multi-directional forged nickel, Sci. Rep. (2019) 1–8. , http://dx.doi.org/10.1038/s41598-018- 36584-w.
  • [12] M. Ebrahimi, Fatigue behaviors of materials processed by planar twist extrusion, Metall. Mater. Trans. A 48 (2017) 6126– 6134. , http://dx.doi.org/10.1007/s11661-017-4375-4.
  • [13] J. Guo, G. Haberfehlner, J. Rosalie, L. Li, M.J. Duarte, G. Kothleitner, G. Dehm, Y. He, R. Pippan, Z. Zhang, In situ atomic-scale observation of oxidation and decomposition processes in nanocrystalline alloys, Nat. Commun. 9 (2018) 1–9. , http://dx.doi.org/10.1038/s41467- 018-03288-8.
  • [14] H. Pouraliakbar, M.R. Jandaghi, Mechanistic insight into the role of severe plastic deformation and post-deformation annealing in fracture behavior of Al-Mn-Si alloy, Mech. Mater. 122 (2018) 145–158. , http://dx.doi.org/10.1016/j. mechmat.2018.04.002.
  • [15] J. Glazer, Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: a review, J. Electron. Mater. 23 (1994) 693–700. , http://dx.doi.org/10.1007/ BF02651361.
  • [16] X. Deng, N. Chawla, K.K. Chawla, M. Koopman, Deformation behavior of (Cu, Ag)-Sn intermetallics by nanoindentation, Acta Mater. 52 (2004) 4291–4303. , http://dx.doi.org/10.1016/j. actamat.2004.05.046.
  • [17] W. Grünberger, M. Heilmaier, L. Schultz, Development of high-strength and high-conductivity conductor materials for pulsed high-field magnets at Dresden, Phys. B Condens. Matter. 294–295 (2001) 643–647. , http://dx.doi.org/10.1016/ S0921-4526(00)00735-3.
  • [18] Y.G. Ko, S. Namgung, B.U. Lee, D.H. Shin, Mechanical and electrical responses of nanostructured Cu-3 wt%Ag alloy fabricated by ECAP and cold rolling, J. Alloys Compd. 504 (2010) S448–S451. , http://dx.doi.org/10.1016/j.jallcom.2010.02.198.
  • [19] Y.Z. Tian, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon, Comparison of microstructures and mechanical properties of a Cu-Ag alloy processed using different severe plastic deformation modes, Mater. Sci. Eng. A 528 (2011) 4331– 4336. , http://dx.doi.org/10.1016/j.msea.2011.01.057.
  • [20] J.B. Liu, L. Zhang, A.P. Dong, L.T. Wang, Y.W. Zeng, L. Meng, Effects of Cr and Zr additions on the microstructure and properties of Cu-6 wt.% Ag alloys, Mater. Sci. Eng. A 532 (2012) 331–338. , http://dx.doi.org/10.1016/j.msea.2011.10.099.
  • [21] R. Zauter, D.V. Kudashov, Precipitation hardened high copper alloys for connector pins made of wire, in: ICEC2006, 2006, 257–261.
  • [22] S. Nestorovi _c, I. Markovi _c, D. Markovi _c, Influence of thermomechanical treatment on the hardening mechanisms and structural changes of a cast Cu-6.6 wt.%Ag alloy, Mater. Des. 31 (2010) 1644–1649. , http://dx.doi.org/ 10.1016/j.matdes.2009.08.027.
  • [23] R. Yang, J. Wen, Y. Zhou, K. Song, Z. Song, Effect of Al element on the microstructure and properties of Cu-Ni-Fe-Mn alloys, Materials (Basel) 11 (2018) 1777, http://dx.doi.org/10.3390/ ma11091777.
  • [24] H. Pouraliakbar, M. Pakbaz, S. Firooz, M.R. Jandaghi, G. Khalaj, Study on the dynamic and static softening phenomena in Al- 6Mg alloy during two-stage deformation through interrupted hot compression test, Meas. J. Int. Meas. Confed. 77 (2016) 50– 53. , http://dx.doi.org/10.1016/j.measurement.2015.08.033.
  • [25] X. Liu, J. Luo, X. Wang, L. Wang, J. Xie, Columnar grains-covered small grains Cu–Sn alloy prepared by two-phase zone continuous casting, Prog. Nat. Sci. Mater. Int. 23 (2013) 94–101. , http://dx.doi.org/10.1016/j.pnsc.2013.01.014.
  • [26] O.M. Irfan, F. Al-mufadi, Y. Al-shataif, F. Djavanroodi, Effect of equal channel angular pressing (ECAP) on erosion– corrosion of pure copper, Appl. Sci. 7 (2017) 1–17. , http://dx. doi.org/10.3390/app7121250.
  • [27] M.R. Jandaghi, H. Pouraliakbar, Elucidating the microscopic origin of electrochemical corrosion and electrical conductivity by lattice response to severe plastic deformation in Al-Mn-Si alloy, Mater. Res. Bull. 108 (2018) 195–206. , http://dx.doi.org/ 10.1016/j.materresbull.2018.09.011.
  • [28] H. Pouraliakbar, M.R. Jandaghi, G. Khalaj, Constrained groove pressing and subsequent annealing of Al-Mn-Si alloy: microstructure evolutions, crystallographic transformations, mechanical properties, electrical conductivity and corrosion resistance, Mater. Des. 124 (2017) 34–46. , http://dx.doi.org/ 10.1016/j.matdes.2017.03.053.
  • [29] B. Hadzima, M. Janecek, R.J. Hellmig, Y. Kutnyakova, Y. Estrin, Microstructure and corrosion behaviour of ultrafine-grained copper, Mater. Sci. Forum Vols. 504 (2006) 883–888. , http://dx. doi.org/10.4028/www.scientific.net/MSF.503-504.883.
  • [30] H. Miyamoto, K. Harada, T. Mimaki, A. Vinogradov, S. Hashimoto, Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing, Corros. Sci. 50 (2008) 1215– 1220. , http://dx.doi.org/10.1016/j.corsci.2008.01.024.
  • [31] K.D. Ralston, N. Birbilis, Effect of grain size on corrosion: a review, Corrosion 66 (2010), 075005-075005-13.
  • [32] T. Yamasaki, H. Miyamoto, T. Mimaki, A. Vinogradov, S. Hashimoto, Stress corrosion cracking susceptibility of ultra-fine grain copper produced by equal-channel angular pressing, Mater. Sci. Eng. A 318 (2001) 122–128. , http://dx. doi.org/10.1016/S0921-5093(01)01332-6.
  • [33] M. Janecek, B. Hadzima, R.J. Hellmig, Y. Estrin, The influence of microstructure on the corrosion properties of Cu polycrystals prepared by ECAP, Kov. Mater. 43 (2005) 258–271.
  • [34] P.V. Liddicoat, X.Z. Liao, Y. Zhao, Y. Zhu, M.Y. Murashkin, E.J. Lavernia, R.Z. Valiev, S.P. Ringer, Nanostructural hierarchy increases the strength of aluminium alloys, Nat. Commun. 1 (2010) 1–7. , http://dx.doi.org/10.1038/ncomms1062.
  • [35] M. Rezaei, E. Tamjid, A. Dinari, Enhanced cell attachment and hemocompatibility of titanium by nanoscale surface modification through severe plastic integration of magnesium-rich islands and porosification, Sci. Rep. 7 (2017) 1–9. , http://dx.doi.org/10.1038/s41598-017-13169-7.
  • [36] H. Miyamoto, Corrosion of ultrafine grained materials by severe plastic deformation, an Overview, Mater. Trans. 57 (2016) 559– 572. , http://dx.doi.org/10.2320/matertrans.M2015452.
  • [37] Y.H. Jang, S.S. Kim, S.Z. Han, C.Y. Lim, C.J. Kim, Corrosion and stress corrosion cracking behavior of equal channel angular pressed oxygen-free copper in 3.5% NaCl solution, J. Mater. Sci. 41 (2006) 4293–4297. , http://dx.doi.org/10.1007/s10853- 006-6992-y.
  • [38] E. McCafferty, Validation of corrosion rates measured by the Tafel extrapolation method, Corros. Sci. 47 (2005) 3202–3215. , http://dx.doi.org/10.1016/j.corsci.2005.05.046.
  • [39] A. Nikfahm, I. Danaee, A. Ashrafi, M.R. Toroghinejad, Effect of grain size changes on corrosion behavior of copper produced by accumulative roll bonding process, Mater. Res. 16 (2013) 1379–1386. , http://dx.doi.org/10.1590/S1516- 14392013005000135.
  • [40] R.M. El-sherif, K.M. Ismail, W.A. Badawy, Effect of Zn and Pb as alloying elements on the electrochemical behavior of brass in NaCl solutions, Electrochim. Acta 49 (2004) 5139–5150. , http://dx.doi.org/10.1016/j.electacta.2004.06.027.
  • [41] N.D. Nam, M.J. Kim, Y.W. Jang, J.G. Kim, Effect of tin on the corrosion behavior of low-alloy steel in an acid chloride solution, Corros. Sci. 52 (2010) 14–20. , http://dx.doi.org/ 10.1016/j.corsci.2009.08.036.
  • [42] A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, E. Matykina, Pitting corrosion behaviour of austenitic stainless steels - combining effects of Mn and Mo additions, Corros. Sci. 50 (2008) 1796–1806. , http://dx.doi.org/10.1016/j. corsci.2008.04.005.
  • [43] A. Pardo, M.C. Merino, M. Carboneras, F. Viejo, R. Arrabal, J. J. Muñoz, Influence of Cu and Sn content in the corrosion of AISI 304 and 316 stainless steels in H2SO4, Corros. Sci. 48 (2006) 1075– 1092. , http://dx.doi.org/10.1016/j.corsci.2005.05.002.
  • [44] W. Wang, Effect of tin addition on the microstructure development and corrosion resistance of sintered 304L stainless steels, J. Mater. Eng. Perform. 8 (1999) 649–652.
  • [45] A.E.R. El-Sayed, A.M. Shaker, H. Gad El-Kareem, Anodic behaviour of antimony and antimony-tin alloys in alkaline solutions, Bull. Chem. Soc. Jpn. 76 (2003) 1527–1535. , http:// dx.doi.org/10.1246/bcsj.76.1527.
  • [46] A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, Y.T. Zhu, Corrosion resistance of ultra fine-grained Ti, Scr. Mater. 51 (2004) 225–229. , http://dx.doi.org/ 10.1016/j.scriptamat.2004.04.011.
  • [47] A.M. Alfantazi, T.M. Ahmed, D. Tromans, Corrosion behavior of copper alloys in chloride media, Mater. Des. 30 (2009) 2425– 2430. , http://dx.doi.org/10.1016/j.matdes.2008.10.015.
  • [48] D. Nickel, D. Dietrich, T. Mehner, P. Frint, D. Spieler, T. Lampke, Effect of strain localization on pitting corrosion of an AlMgSi0.5 alloy, Metals (Basel) 5 (2015) 172–191. , http://dx. doi.org/10.3390/met5010172.
  • [49] M. Hoseini, A. Shahryari, S. Omanovic, Szpunar, Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing, Corros. Sci. 51 (2009) 3064–3067. , http://dx. doi.org/10.1016/j.corsci.2009.08.017.
  • [50] E. Schafler, G. Steiner, E. Korznikova, M. Kerber, M.J. Zehetbauer, Lattice defect investigation of ECAP-Cu by means of X-ray line profile analysis, calorimetry and electrical resistometry, Mater. Sci. Eng. A 411 (2005) 169–173. , http://dx.doi.org/10.1016/j.msea.2005.08.070.
  • [51] M.E. Gruner, P. Entel, Impact of local lattice distortions on the structural stability of Fe-Pd magnetic shape-memory alloys, Phys. Rev. B 214415 (2011) 1–11. , http://dx.doi.org/10.1103/ PhysRevB.83.214415.
  • [52] Y. Estrin, M. Janecek, G.I. Raab, R.Z. Valiev, A. Zi, Severe plastic deformation as a means of producing systems parts, Metall. Mater. Trans. A (2007), http://dx.doi.org/10.1007/ s11661-007-9120-y.
  • [53] M.H. Shaeri, M. Shaeri, M. Ebrahimi, M.T. Salehi, S.H. Seyyedein, Effect of ECAP temperature on microstructure and mechanical properties of Al–Zn–Mg–Cu alloy, Prog. Nat. Sci. Mater. Int. 26 (2016) 182–191. , http://dx.doi.org/10.1016/j. pnsc.2016.03.003.
  • [54] P. Frint, M. Härtel, R. Selbmann, D. Dietrich, M. Bergmann, T. Lampke, D. Landgrebe, M. Wagner, Microstructural evolution during severe plastic deformation by gradation extrusion, Metals (Basel) 8 (2018) 96, http://dx.doi.org/10.3390/ met8020096.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6646bb06-0f4a-4cf0-b441-7984fe0dcac0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.