PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Przegląd bezpośrednich metod oceny czystości powierzchni metali

Identyfikatory
Warianty tytułu
EN
Overview of direct methods for evaluating metal surface cleanliness
Języki publikacji
PL
Abstrakty
PL
Wzrastająca świadomość dotycząca jakości produktu, tendencja do miniaturyzacji i konieczność stosowania coraz bardziej wyrafinowanych technik wykończenia powierzchni wymuszają dbałość o poprawę czyszczenia części, jak również monitorowanie ich czystości. Dostępne dane literaturowe jednoznacznie wskazują, że przyczyną złej jakości powłok, ich słabej przyczepności, niskiej odporności na korozję, itp. jest niewystarczające oczyszczenie powierzchni przed nałożeniem powłoki. Problemy te jednoznacznie wskazują na zasadność zwrócenia uwagi na problematykę dotyczącą czystości powierzchni. W artykule dokonano przeglądu literatury dotyczącej bezpośrednich metod oceny czystości powierzchni metali. Opisano typy zanieczyszczeń, poziomy czystości produktu oraz metody pomiaru czystości powierzchni.
EN
Increasing awareness of product quality, the tendency to miniaturization, and the need to use more and more sophisticated surface finishing techniques necessitate the care of improving the cleaning of parts, as well as monitoring their cleanliness. The available literature data clearly show that the reason for the poor quality of the coatings, poor adhesion, low corrosion resistance, etc., is insufficient cleaning of the surface before coating. These problems indicate the validity of paying attention to the issue of surface cleanliness. The article reviews the literature on direct methods of assessing the cleanliness of metal surfaces. The types of impurities, product cleanliness levels, and methods of measuring surface cleanliness are described.
Rocznik
Strony
12--17
Opis fizyczny
Bibliogr. 41 poz., tab.
Twórcy
  • APTIV, 30-399 Kraków, ul. Podgórki Tynieckie 2
  • AGH Akademia Górniczo-Hutnicza w Krakowie, Wydział Metali Nieżelaznych, Al. Mickiewicza 30, 30-059 Kraków
autor
  • APTIV, 30-399 Kraków, ul. Podgórki Tynieckie 2
Bibliografia
  • [1] ASTM D5946-96, Standard Test Method for Corona-Treated Polymer Films Using Water Contact Angle Measurements, ASTM International, West Conshohocken, PA, 2009.
  • [2] ASTM F21-65, Standard Test Method for Hydrophobic Surface Films by the Atomizer Test, ASTM International, West Conshohocken, PA, 2007.
  • [3] ASTM F22-02, Standard Test Method for Hydrophobic Surface Films by the Water-Break Test, ASTM International, West Conshohocken, PA, 2007.
  • [4] ASTM C813-90, Standard Test Method for Hydrophobic Contamination on Glass by Contact Angle Measurement, ASTM International, West Conshohocken, PA, 2009.
  • [5] ASTM D5725-99, Standard Test Method for Surface Wettability and Absorbency of Sheeted Materials Using an Automated Contact Angle Tester, ASTM International, West Conshohocken, PA, 2008.
  • [6] ASTM D724-99, Standard Test Method for Surface Wettability of Paper (Angle-of-Contact Method), ASTM International, West Conshohocken, PA, 2009.
  • [7] ASTM D7490-08, Standard Test Method for Measurement of the Surface Tension of Solid Coatings, Substrates and Pigments using Contact Angle Measurements, ASTM International, West Conshohocken, PA, 2008.
  • [8] ASTM E1216-06, Standard Practice for Sampling for Particulate Contamination by Tape Lift, ASTM International, West Conshohocken, PA, 2006.
  • [9] ASTM D2578-09, Standard Test Method for Wetting Tension of Polyethylene and Polypropylene Films, ASTM International, West Conshohocken, PA, 2009.
  • [10] ASTM D7541-11, Standard Practice for Estimating Critical Surface Tensions, ASTM International, West Conshohocken, PA, 2011.
  • [11] ASTM D3825-09, Standard Test Method for Dynamic Surface Tension by the Fast-Bubble Technique, ASTM International, West Conshohocken, PA, 2009.
  • [12] Benkovich M.G. 2004. “Improved Method for Quantifying Nonvolatile Residues on Surfaces and in Liquids”. Report KCP-613-6733, Department of Energy, Honeywell Federal Manufacturing & Technologies, Kansas City, KS.
  • [13] Benkovich M.G. 2005. “MESERAN Test Results for Elimination of Flammable Solvents in Wipe Applications at Pantex. Report KCP-613-7015”, Department of Energy, Honeywell Federal Manufacturing & Technologies, Kansas City, KS, March.
  • [14] Christensen T.C., A.F. Tecihmann, V.P. Janule. 2000. “Surface tension measurement in a pressurized environment”. U.S. Patent 6,085,577.
  • [15] Dumitrescu-Buforn L., A. Karimi, N. Conte, Y. Emery, J. Kühn. 2005. “Nano-Scale Surface Engineering and Mechanical Characterization”. BRAMAT 2005 International Conference on Materials Science and Engineering, Brasov, Romania.
  • [16] Durkee J.B. 2007. “Cleanliness verification: grazing angle FTIR (GAFTIR) vs. OSEE”. Controlled Environments Magazine: 29–30.
  • [17] Dynamic Surface Tension Measurement, Chem-Dyne Research Corporation, SensaDyne Instrument Division, Mesa, AZ, 2011. www. sensadyne.com.
  • [18] Ellis Brian. 2005. “The water break test”. Circuit World 31(4): 47-50.
  • [19] Hamilton M.L.. 2007. “ Applications of Grazing-Angle Reflection Absorption Fourier Transform Infrared Spectroscopy to the Analysis of Surface Contamination”, Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand.
  • [20] Fainerman V.B., A.V. Makievski, R. Miller. 2004. “Accurate analysis of the bubble formation process in maximum bubble pressure tensiometry”. Rev. Sci. Instrum. 75: 213 -222.
  • [21] IEST Standard IEST-STD-CC1246D, Product Cleanliness Levels and Contamination Control Program, Institute for Environmental Science and Technology (IEST), Rolling Meadows, IL, 2002.
  • [22] ISO Standard ISO 8502-3, Preparation of steel substrates before application of paints and related products – Tests for the assessment of surface cleanliness – Part 3: Assessment of dust on steel surfaces prepared for painting (pressure-sensitive tape method), ISO International Standards Organization, Geneva, Switzerland, 2006.
  • [23] Kherani N.P., W.T. Shmayda. 1999. Monitor for measuring the radioactivity of a surface, U.S. Patent 5,942,757.
  • [24] Kohno M., T. Kitajima, S. Hirae, S. Yokoyama. 2003. “Evaluation of surface contamination by noncontact capacitance method under UV irradiation”. Jpn. J. Appl. Phys. 42: 5837.
  • [25] Krieger G.L., G.J. Wilson. 1965. Measuring surface cleanliness by indium adhesion, Mater. Res. Stds. 5: 341.
  • [26] Kuhn, A.T. 1993. “Is it clean? Testing for Cleanliness of Metal Surfaces”. Metal Finishing 91(9):25-31.
  • [27] Linford H.B., E.B. Saubestre. 1953., Plating, 40(6):633-645.
  • [28] [MIL-DTL-53072C, Chemical Agent Resistant Coating (CARC) System Application Procedures and Quality Control Inspection, Department of Defense, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, 2003.
  • [29] Mittal K.L. 1979. “Surface contamination: an overview”, in: K.L. Mittal (Ed.), Surface Contamination: Genesis, Detection and Control, vol. 1, 3-45. Plenum Publishing, New York, NY.
  • [30] NASA Document JPR 5322.1. 2009. “Contamination Control Requirements Manual”, National Aeronautics and Space Administration. John- son Space Center, Houston, TX.
  • [31] NIOSH, Environmental Exposure to Antineoplastic Agents. Environmental Sampling, Decontamination, and Protective Equipment, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention, Atlanta, GA, 2010. www.cdc.gov/niosh/topics/antineoplastic/sampling.html.
  • [32] OSHA, Evaluation Guidelines for Surface Sampling Methods. Report T-006-01-0104-M, Industrial Hygiene Chemistry Division, OSHA Technical Center, Salt Lake City, UT, 2001.
  • [33] OSHA Technical Manual. TED 01-00-015 [TED 1-0.15A], OSHA, Washington, DC, 2008. www.osha.gov/dts/osta/otm.html.
  • [34] Peterson I.R.. 1999. “Kelvin probe liquid-surface potential sensor”. Rev. Sci. Instrum 70: 3418.
  • [35] Rajiv Kohli. 2012. “Methods for Monitoring and Measuring Cleanliness of Surfaces”. Developments in Surface Contamination and Cleaning, vol 4, 107- 178. Edited by Rajiv Kohli & K.L. Mittal.
  • [36] Schümann D., R. Münzer. 2009. “Method and device for measuring the surface tension of liquids”. U.S. Patent 7,481,097
  • [37] Schuetten R., M. Kleber, M. Jerenz, I. Gregorius, B. Zimmermann, R. Kaesmaier, J. Hickson, N. Tamayo and R. Newcomb. 2009. “A new surface analysis method for semiconductor manufacturing, based on surface-potential measurements”, Proc. ASMC 2009-20th Annual IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 169–173, IEEE, Piscatawy, NJ.
  • [38] Surface Quality Monitor, Product Fact Sheet, Photo Emission Tech. Inc., Camarillo, CA, 2011. http:/www.photoemission.com.
  • [39] Terrat J.P., J. Boissel. 1995. “A new device for checking surface contamination based upon electrical measurement”. Mikrochim. Acta 120: 183.
  • [40] Viau S., C. Dion, G. Perrault, A. Dufresne. 2009. “Cleaning and Decontamination of Workplaces Containing Beryllium”. IRRST Report R-614, L’Institut de recherche ´ Robert-Sauve ´ en sante ´ et en se ´curite ´ du travail, Montreal, Canada www.irrst.qc.ca.
  • [41] Welch C.S.. 1995. “Feasibility study of OSEE inspection for flux residue on electronic assemblies”. Soldering Surf. Mount Technol. 7: 8.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6643435a-19f5-4b35-94ae-fd05322d887f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.