PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study of coupled oscillator system usingthe classical Euler-Lagrange equations

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Problems involving vibrations (mechanical orelectrical) can be reduced to problems of coupled oscil-lators. For this, we consider the motion of coupled oscilla-tors system using Lagrangian method. The Lagrangian ofthe system was initially constructed, and then the Euler-Lagrange equations (i.e., equations of motion of the system)have been obtained. The obtained equations of motion are ahomogenous second-order equation. These equations weresolved numerically using the ode45 code, which is basedon Runge-Kutta method.
Rocznik
Strony
1--5
Opis fizyczny
Bibliogr. 27 poz., 1 rys., wykr.
Twórcy
autor
  • Department of Physics, College of Sciences, P.O. box 7, Palestine Technical University-Kadoorie-Ptuk, Tulkarm 303, Palestine
autor
  • Department of Applied Computing, College of Sciences, P.O. box 7, Palestine Technical University-Kadoorie-Ptuk, Tulkarm 303, Palestine
autor
  • Department of Physics, College of Sciences, P.O. box 7, Palestine Technical University-Kadoorie-Ptuk, Tulkarm 303, Palestine
autor
  • Department of Physics, College of Sciences, P.O. box 7, Palestine Technical University-Kadoorie-Ptuk, Tulkarm 303, Palestine
Bibliografia
  • [1] Marion J. B., and Thornton S. T. Classical Dynamics of Particles and Systems, 3rd edn. (Harcourt Brace Jovanovich), 1988.
  • [2] Hand L. N., and Finch J. D. Analytical Mechanics. Cambridge University Press, 2012.
  • [3] Murray R. M. Nonlinear control of mechanical systems: A Lagrangian perspective. Annual Reviews in Control. Vol. 21, pp. 31- 42, 1997.
  • [4] Musielak Z. E., Roy D., and Swift L. D. Method to derive Lagrangian and Hamiltonian for a nonlinear dynamical system with variable coeflcients. Chaos, Solitons and Fractals. Vol. 38, no. 3, pp. 894-902, 2008.
  • [5] Hajimiri A., and Lee T. A General Theory of Phase Noise in Electrical Oscillators,” IEEE Solid State Circuits, vol. 33, no. 2, pp. 179-194, 1998.
  • [6] Liu M. L. Principle and Application of Oscillator, Higher Education Press, Beijing, pp. 41-43, 1984.
  • [7] Butcher J. C. Numerical methods for ordinary differential equations, second revised ed., Wiley, Chichester, 2008.
  • [8] Hairer E., Lubich C., and Wanner G. Geometric numerical integration. Structure preserving algorithms for ordinary differential equations. 2nd revised ed., Springer, Berlin, 2006.
  • [9] Deuflhard P., and Bornemann F. Scientific computing with ordinary differential equations, Springer, New York, 2002.
  • [10] Atkinson K., Han W., and Stewart D. Numerical Solution of Ordinary Differential Equations. A John Wiley and sons, Inc., Publication, 2008.
  • [11] Potra F. A., and Yen J. Implicit Numerical Integration for Euler- Lagrange Equations via Tangent Space Parameterization. Mechanics of Structures and Machines, vol. 19, no. 1, pp. 77-98, 2007.
  • [12] Rheinboldt W. C. Performance Analysis of Some Methods for Solving Euler-Lagrange Equations. Appl. Math. Lett. vol. 8, no. 1, pp. 77-82, 1995.
  • [13] Hussain K. A., Ismail F., Senu N., and Rabiei F. Fourth-Order Improved Runge-Kutta Method for Directly Solving Special Third- Order Ordinary Differential Equations. Iranian Journal of Science and Technology, Transaction A: Science. Vol. 41, no. 2, 2017.
  • [14] Chauhan, V., Srivastava, P.K. Computational techniques based on Runge-Kutta method of various order and type for solving differential equations. International Journal of Mathematical, Engineering and Management Sciences Vol. 4, no. 2, 2019.
  • [15] Khalilia H., Jarrar R., and Asad J. Numerical study of motion of a spherical particle in a rotating parabola using Lagrangian. Journal of the Serbian Society for Computational Mechanics. Vol. 12, no. 1, 2018.
  • [16] Asad J., Florea O., and Khalilia H. Numerical study of the motion of a heavy ball sliding on a rotating wire. Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics. Vol. 13, no. 1, 2020.
  • [17] Asad J., and FloreaO. Numerical aspects of two coupled harmonic oscillators. Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica. Vol. 28, no. 1, 2020.
  • [18] Rutia W. Beitrag zur naherngsweisen Integration totaler Differential gleichungen. Zcitschrift Math. Pbys. Vol. 46, pp. 435- 453, 1901.
  • [19] Nystrom E. I. Acta Societatis Scienti aru1l1 Fcnni cac 50, No. 13, pp.1- 55, 1925.
  • [20] Moore H. Matlab for Engineers. Third Edition, 2005.
  • [21] Marsavina L., Nurse A. D., Braescu L., and Craciun E. M. Stress singularity of symmetric free-edge joints with elasto-plastic behavior,” ComputationalMaterials Science. Vol. 52, no. 1, pp. 282- 286, 2012.
  • [22] Shampine L. F. Numerical Solution of Ordinary Equations. Chapman and Hall, 1994.
  • [23] Attawa S. Matlab: A Practical Introduction to Programming and Problem Solving, College of Engineering, Boston University, Boston, MA, 2009
  • [24] Press W. H., Teukolsky S. A., Vetterling W. T., and Flannery B. P. Numerical recipes in C: The art of scientific computing. Second Edition. Cambridge University Press, 1992.
  • [25] Dormand J. R, and Prince P. J. A family of embedded Runge-Kutta formulae,” J. Comp. Appl. Math, vol. 6, pp. 19-26, 1980.
  • [26] Houcque D., and Robert R. Applications of MATLAB: Ordinary Differential Equations (ODE), McCormick School of Engineering and Applied Science - Northwestern University, 2007.
  • [27] Gilat A. Matlab an Introduction with Applications, Fourth Edition, Ohio University, 2011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66424837-9ac6-4d81-95cd-4fe7efe0b0c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.