
125

constraint programming, decision support, ASP

 Paweł SITEK, Jarosław WIKAREK
∗

Towards intelligent decision support for application service

providing

Abstract

Decision support systems (DSS) provide decision-makers with an interactive

environment for analyses of information with various models to help solve unstructured

and NP-hard problems. The important aspect of DSS is a technical and technological

approach to the design and implementation of the above systems. A traditional approach

to DSS engineering and implementation requires a great deal of effort for its

maintenance. However, the enterprises would like to concentrate on its core

competitiveness instead of non-core activities like IT maintenance. As a result of this, IT

outsourcing has became a very popular event. Thus there is a growing need for intelligent

decision support tools capable of assisting a decision maker in many problems in SMEs

(Small and Medium Sized Enterprises). In this paper we present the use of declarative

programming (constraint logic programming and relational SQL database) as an

environment and framework for such decision support systems in an application service

providing (ASP) model.

1. INTRODUCTION

An important aspect of decision support systems studies is to develop techniques for automatic

or interactive decision analysis in a complex real-world situation. Decision makers face the

problem of making optimal choices in uncertain situation under given constraints with various

sources of knowledge (often semi-structured or ill-structured). Provided that a decision support

system is an interactive computer-based system that helps decision-makers utilize data and

models to solve unstructured problems [1], an aspect of decision support systems studies is to

develop techniques of modelling of decision problems and data management in a unified

framework.

Another aspect of decision support systems is technical and technological approach to DSS

design and implementation as an information system (IS).

A traditional approach to IS engineering and implementation requires a great deal of effort for

its maintenance. Up to 70% of information technology (IT) cost is tied up in maintenance in

many enterprises [2].

∗ PhD, PhD, Technical University of Kielce, Control and Management Systems Section,

1000-PP 7, Kielce, Poland, E-MAIL: sitek@tu.kielce.pl, j.wikarek@tu.kielce.pl

126

However, the enterprises would like to concentrate on its core/base competitiveness instead of

non-core/non-base activities like IT and specially IS maintenance and management. On the

other hand IT has also been changed –a rapid development of Internet, computing

environments, lower costs of hardware, new programming paradigms and so on. As a result of

the above premises, IT outsourcing has become a very popular event. Outsourcing is

considered to be an important way in the evolution of the IT. A service scope of IT outsourcing

has been extended so that the hardware, the software, the application, the network, the business

process and the know-how can be covered.

Thus, there is growing need for intelligent decision support tools capable of assisting a decision

maker in many problems in SMEs. In this paper we present the use of declarative programming

(constraint logic programming and relational SQL database) as an environment and framework

for such decision support systems in ASP model.

2. ASP MODEL

IS outsourcing has asked for decades but gained attention during the 1990s as well-known

firms signed large contracts, primarily to cut costs or to concentrate on their core business [3].

Client applications were transferred to vendor machines or the vendor bought the client’s

systems. In the late 1990s, application service providers (ASPs) offered products, such as

Enterprise Resource Planning (ERP) systems, as services available through networks such as

the Internet. ASP has been defined as a single point of contact for all the telecommunications,

hardware, software, and consulting necessary to deploy, run, and maintain hosted applications

remotely. One would expect that the provision of an application service (AS) shares many

features with conventional IS outsourcing as well as offering alternative ways of outsourcing.

However, ASPs usually deliver services through the Internet, increasing uncertainty about

availability and response time and, in contrast to conventional (non-ASP) outsourcing, AS

provision necessitates coordination among network providers, hosting services, software

vendors, and consultants.

Like any information systems (IS) marketplace development, the ASP model may enjoy great

success or be replaced quickly by other market or technical offerings.

Fig. 1 The structure of ASP model

127

The important components of ASP’s operational environment have been shown in fig. 1 [8]:

• The browser interface – the browser is now (during Internet revolution) the door to

customer’s world. Using a browser interface as the front end of an application keeps

the cost of both infrastructure and technical support very low for the customer.

• The internet service provider (ISP) – the ability to deliver first class systems both

nationally and internationally has been a challenge. For SME’s the cost of dedicated

lines has generally been prohibitive. SME’s can now have access to bandwidth that

allows complex and real time movement of information around the world. Nowadays,

the central challenge of ISP is maintaining sufficient response over the WEB. For

instance, some ERP systems generate multiple updates to multiple files from a single

transaction entry by the user. While this updating generally occurs in the back end

system (and therefore will not impact directly on response), the flow of information

between the back end system and multiple users can be substantial. Response time to

the user is therefore a central challenge that the ISP must address.

• Support center
o (implementation of the software)-regardless of the size of a client, each

business will seek to have his or her own needs reflected in the software. The

business challenge for the ASP is to maintain enough consistency across

clients in order to gain economies in the maintenance and support processes.

Especially, SMEs or other customers without ERP experience will probably

settle for the cheaper, more quickly implemented standard system. To deliver

tailored ERP systems, the ASP will need experienced implementers who can

customize the software to meet client’s needs. Timing is also an essential

element of success.

o (managing change in the client)- Delivering new software over the Web

does not vary the need to train staff in a new system or new processes.

Traditional issues such as staff communication, change management, and

training are therefore essential if client staff is to accept the new systems.

The ASP will need to provide adequate on-site support to the client before

and during live operation. Tailored courses, either face to face or via the Web

will also support successful implementation.

o (help desk)- A call center support is essential where an ASP is providing

``mission critical'' systems to the operation of a business. The ASP must staff

itself to provide a full range of services including on-site work. ASPs

themselves require support from the vendor.

• Hardware farm- The hardware farm, as the name implies, provides capacity to the

ASP for the delivery of the ERP, CRM or other IS software. The most important

ingredient is the ability to grow the capacity to meet the needs of the client.

3. DECLARATIVE PROGRAMMING AND ENVIRONMENTS – SQL,

CLP

Declarative programming is a term with two distinct meanings, both of which are in current

use. According to one definition, a program is "declarative" if it describes what something is

like, rather than how to create it. For example, HTML, XML web pages are declarative because

they describe what the page should contain — title, text, images — but not how to actually

128

display the page on a computer screen. This is a different approach from imperative

programming languages such as Pascal, C, and Java, which require the programmer to specify

an algorithm to be run. In short, imperative programs explicitly specify an algorithm to achieve

a goal, while declarative programs explicitly specify the goal and leave the implementation of

the algorithm to the support software (for example, an SQL select statement specifies the

properties of the data to be extracted from a database, not the process of extracting the data).

According to a different definition, a program is "declarative" if it is written in a purely

functional programming language, logic programming language, or constraint programming

language. The phrase "declarative language" is sometimes used to describe all such

programming languages as a group, and to contrast them against imperative languages.

These two definitions overlap somewhat. In particular, constraint programming and, to a lesser

degree, logic programming, focus on describing the properties of the desired solution (the

what), leaving unspecified the actual algorithm that should be used to find that solution (the

how). However, most logic and constraint languages are able to describe algorithms and

implementation details, so they are not strictly declarative by the first definition.

Constraint Logic Programming as a declarative modeling and procedural programming

environment is increasingly realized as an effective tool for decision support systems [4, 5, 6].

CLP is suitable for Decision Support Systems (DSS) because [1, 5]:

• CLP is a very good tool for the development of knowledge base that has expertise and

experience represented in terms of logic, rules and constraints. This tool allows the

knowledge base to be built in an incremental and accumulating way (it is suitable for

ill-structured or semi-structured decision analysis problems).

• Constraints naturally represent decisions and their inter-dependencies. Decision

choices are explicitly modeled as the domains of constraint variables.

• CLP can serve as a good integrative environment for the decision analysis that has

different kinds of model.

• Decision analysis requires a number of computational facilities which this tool can

provide.

4 CONCEPT OF DSS BASED ON DECLARATIVE PROGRAMMING

FOR SCHEDULING PROBLEMS

The presented in (3) advantages and possibilities of declarative programming environment for

decision support make it interesting for decision support in SMEs. The decision support system

for production scheduling has been presented as an example of implementation of DSS with

declarative programming. Building decision support system for scheduling, covering a variety

of production organization forms, such as job-shop, flow-shop, project, multi-project etc., is

especially interesting. The following assumptions were adopted in order to design the

presented scheduling processes of the decision support system (see Fig.2):

• The system should possess data structures in relational model that make its use

possible in different production organization environments

• The system should make it possible to schedule the whole set of tasks simultaneously,

and after a suitable schedule has been found, it should be possible to add a new set of

tasks later, and to find a suitable schedule for both sets without the necessity to change

initial schedules.

• The system should regard:

129

o Additional (external) resource types apart from machines, e.g. people, tools, etc.

o Temporary inaccessibility of all resource types.

o The processing times dependent on the starting time of jobs, allocated additional

resources, etc.

• The decisions of the systems are the answers to appropriate questions formed as CLP

predicates.

Fig.2 Concept of DSS based on declarative programming for scheduling problems

130

The range of the decisions made by the system depends on data structures and asked questions.

Thus, the system is very flexible as it is possible to ask all kinds of questions (write all kinds of

predicates). In this version of DSS the questions which can be asked are the following:

• What is the minimum number of people necessary for the assigned makespan and

proper schedule? opl_g(_,C)

• What is the minimum makespan at the assigned number of people and proper

schedule? opc_g(L,_)

• Is it possible to order new tasks (both orders and projects) for the determined

makespan? szu_g(L,C)

• What is minimum makespan at the assigned number of people for new tasks?

opc_g(L,_)

• What is the minimum number of people necessary for the assigned makespan for new

tasks? (without changing the schedule of basic set of tasks) opl_g(_,C)

• Is it possible to order tasks for the determined makespan ? opc_g(_,L)

• Is it possible to order tasks for the determined makespan where the processing time of

job depends on the allocated number of people? opc_g(L,C)

These questions are just examples of questions that the present system can be asked. New

questions are new predicates that need to be created in CLP environment. Two types of

questions are asked in the system:

• About the existence of the solution (eg., is it possible to carry out a new task in the

particular time?, etc.)

• About a particular kind of the solution: find a suitable schedule fulfilling the

performance index, find the minimum scheduling length-makespan, find the minimum

number of people to carry out the task, etc.

5 ASP FRAMEWORK OF DSS WITH DELCARATIVE

PROGRAMMING

We propose ECL
i
PS

e
 [9] as a platform to decision support in scheduling problems. ECL

i
PS

e
 is

a software system - based on the CLP paradigm - for the development and deployment of

constraint programming applications. It is also ideal for developing aspects of combinatorial

problem solving, e.g. problem modeling, constraint programming, mathematical programming,

and search techniques. Its wide scope makes it a good tool for research into hybrid problem

solving methods. ECL
i
PS

e
 comprises several constraint solver libraries, a high-level modeling

and control language, interfaces to third-party solvers, an integrated development environment

and interfaces for embedding into host environment. The ECL
i
PS

e
 programming language is

largely backward-compatible with Prolog and supports different dialects. It provides, however,

an extended set of basic data types (byte strings, unlimited precision integer and rational

numbers, double precision floats and double precision intervals).

Data structures were designed in such a way that they could be easily used to decision

problems in a variety of scheduling environments, which is job-shop, flow-shop, project or

multi-project. The obtained flexibility resulted from the use of relational data model. The

implementation framework is shown in fig.3. All structures of DSS where implemented in

XML. XML has initially designed for the exchange electronic information and documents.

Now, XML is becoming the standard for data exchange among distributed applications

components or co-operating applications and systems. The most widely supported technologies

131

for describing the schema of XML are Documents Type Definitions (DTDs) and XML-schema

[10]. The DTDs files for DSS data structures have been presented in fig. 4 and fig. 5. With the

use of XML, communication and information exchange can be established regardless of the

underlying storage platform. However, different applications, environments and systems that

communicate using XML have to transform XML to underlying information model, which is

usually a relational DBMS (Database Management System). The implementation and used

tools for the above DSS system are suitable and useful for the ASP model. In the ASP model

the application software resides on the vendor's system and is accessed by users through a web

browser using HTML or by special purpose client software provided by the vendor. Custom

client software can also interface to these systems through XML APIs. These APIs can also be

used where integration with in-house systems is required.

Fig. 3 Implementation framework of DSS

132

<!ELEMENT typ_operacji EMPTY >

<!ELEMENT operacja EMPTY >

<!ELEMENT operacje (typ_operacji+,operacja+) >

<!ATTLIST typ_operacji kod_typu_o ID #REQUIRED>

<!ATTLIST typ_operacji opisCDATA #REQUIRED >

<!ATTLIST operacja kod_o ID #REQUIRED >

<!ATTLIST operacja nazwa CDATA #REQUIRED >

<!ATTLIST operacja kod_typu_o IDREF #REQUIRED>

Fig. 4 DTD file for description of task (job).

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT przydzial EMPTY>

<!ELEMENT kolejność EMPTY>

<!ELEMENT przy_zas EMPTY>

<!ELEMENT technologia (predykaty,zasoby,operacje, przydzial+, kolejnosc+,przy_zas+)>

<!ATTLIST przydzial kod_o IDREF #REQUIRED>

<!ATTLIST przydzial kod_m IDREF #REQUIRED>

<!ATTLIST przydzial czas CDATA #REQUIRED>

<!ATTLIST przydzial typ CDATA #REQUIRED>

<!ATTLIST kolejnosc kod_o_p IDREF #REQUIRED>

<!ATTLIST kolejnosc kod_o_d IDREF #REQUIRED>

<!ATTLIST przy_zas kod_o IDREF #REQUIRED>

<!ATTLIST przy_zas kod_z IDREF #REQUIRED>

<!ATTLIST przy_zas ile CDATA #REQUIRED>

<!ATTLIST technologia predykat IDREF #REQUIRED>

<!ENTITY % zas SYSTEM "zasoby.dtd">

<!ENTITY % oper SYSTEM "operacje.dtd">

<!ENTITY % pre SYSTEM "predykat.dtd">

%zas;

%oper;

%pre;

<!ENTITY lis_operacja SYSTEM "operacje.xml">

<!ENTITY lis_zasoby SYSTEM "zasoby.xml">

<!ENTITY lis_pred SYSTEM "predykat.xml">

Fig. 5 DTD file of relationship among entities of DSS

6 ILLUSTRATIVE EXAMPLES

After the complete implementation of the DSS into ECL
i
PS

e
 and XML environments,

computation experiments were carried out. The job-shop scheduling problem with manpower

resources (Example 1) and project –building house (Example 2) were considered.

The proposed illustrative examples cover a wide range of scheduling problems encountered in the

SMEs. The examples are selected in such a way that they how two extremely different forms of

production organization; repetitive production in the job-shop environment and the unique production

including the project. The presented methodology makes solving scheduling problems possible also in

indirect methods of production organization. Moreover, the examples are larded with problems of

constrained resources (e.g. manpower, specialized machines, etc.) and the dependence of particular jobs

processing time on the amount of the allocated resources, for instance.

133

6.1 Example 1- the job shop scheduling.

In the classical scheduling theory job processing times are constant (Example_1a). However,

there are many situations where processing time of a job depends on the starting time of the job

in queue or the amount of allocated additional resources (e.g. people) (Example_1b) etc. The

parameters of computational examples are presented in table 1. The job data structures are

shown in Fig. 6a and Fig. 6b.

Fig.6a. Description of task (job) data structure for job-shop computational example

(Example_1a)

Fig.6b. Description of task (job) data structure for job-shop computational example

(Example_1b)-the processing times depend on allocated number of people.

The computational Example_1b was carried out with job processing times of jobs dependent

on the allocated additional resource (people). The parameters of this example are presented in

tab.1 without processing times and number of allocated people. The processing time is a

function of allocated people f(pj,aj,uj) fig. 7.

f(pj,aj,uj) = pj – aj*uj and f(pj,aj,uj) > 0 and aj =1

where :

• pj - processing time from Example_1.

• uj- additional number of allocated people.

• aj - acceleration factor

Fig 7 Processing time for Example_2b

134

Table 1. Parameters of computational examples (Example_1a, Example_1b)

j∈{a,b,c,d,e,f,g}, o∈{a,b,c,d,e,f}, s∈{s1,s2,s3,s4,s5,s6}

j=a [(4,1,2), (4,2,1), (3,3,1), (8,4,1), (3,5,1),(3,6,1)]

j=b [(2,5,1), (3,4,1), (5,3,1), (4,2,1), (4,1,2),(8,6,1)]

j=c [(8,1,2), (3,5,1), (4,2,1), (4,3,1), (8,4,1),(4,6,1)]

j=d [(4,1,2), (4,2,1), (5,3,1), (3,4,1), (3,5,1),(3,6,1)]

j=e [(3,5,1), (3,4,1), (3,3,1), (4,2,1), (2,1,2),(4,6,1)]

j=f [(6,5,1), (4,4,1), (6,3,1), (6,2,1), (4,1,2),(3,6,1)]

j=g [(4,3,1), (3,5,1), (4,1,2), (5,2,1), (4,4,1),(2,6,1)]

The time constrained resources availability and manpower limitation were modeled as a list of

parameters. The resource occupancy can be interpreted as a job with the fixed start times for all

their operations and fixed manpower requirements. For the computational example the

following questions (write following predicates) were asked (see section 4):

• opl_g(_,48) (see fig.6)

• opc_g(5,90) (see fig.7,8)

• szu_g(5,60) (see fig. 9)

• szu_g(5,45) (see fig. 10).

Computation experiments were started on the computer PIV 1,4 GHz, RAM 512 under

Windows XP.

Fig. 8 Answer to the question implemented in predicate opl_g(_,48)–result Lmin=5

(Example_1a)

135

Fig. 9 Answer to the question implemented in predicate opc_g(5,_)–result Cmax=47

(Example_1a)

Fig. 10 Gantt’s chart for decision from fig.9 (Example_1a)

136

Fig. 11 Answer to the question implemented in predicate szu_g(5,60) – Yes (Example_1a)

Fig. 12 Answer to the question implemented in predicate szu_g(5,45) – NO (Example_1a)

The results of computational experiments (Example_1b) have been shown at Fig. 13, Fig.14.

Fig. 13 Answer to question implemented in predicate szu_g(8,25) – Yes (Example_1b)

137

Fig 14.Gantt’s charts for decision from fig. 13 (Example_1b).

6.2 Example 2 –building house-project

A typical modern-day project has a variety of complications not considered in the original

PERT/CPM methodology. There are three particular situations:

• You may be able to accelerate the completion of a project by speeding up or

“crashing” some of the activities in the project.

• Your ability to finish a project quickly is hindered by limited resources (e.g., two

activities that might otherwise be done simultaneously, in fact have to be done

sequentially because they both require a crane and you have only one crane on site).

• How long it takes to do each activity is a random variable.

In table 2, we list the activities involved in a simple, but nontrivial, project of building a house.

An activity cannot be started until all of its predecessors are finished. The network activity for

138

this project has been shown in fig.15. To solve this example the DSS with declarative

programming (section 4) was used. In this example the processing times of activities depend on

allocated manpower resource.

Table 2 Parameters of Example_2

On. Activity Time Min_MAN Max_MAX Name of activity

1 10 2 2 Dig Basement

2 12 4 6 Pour Foundation

3 6 1 3 Pour Basement

4 6 2 3 Install Floor Joists

5 6 1 3 Install Walls (ext)

6 4 2 8 Install Rafters

7 4 2 4 Install Walls (int)

8 4 2 2 Install Roof

9 16 4 8 Install Windows, Doors (ext)

10 12 4 8 Install Networks

11 12 6 8 Interior Plastering

12 4 2 4 Painting (int)

13 6 2 3 Finish Interior

14 18 6 9 Finish Terrace

15 4 2 4 Garden Arrangement

16 18 6 12 Exterior Plastering

MIN_MAN – minimum manpower for activity

MAX_MAN – maximum manpower for activity

Fig. 15 Activity network

For the computational example the following questions (write following predicates) were asked

(see section 4):

• opc_g(150,200) (see fig. 16).

• opc_g(5,400) (see fig. 18).

• opc_g(7,200) (see fig. 19, 20).

• opc_g(12,200) (see fig. 21, 22, 23) - processing times of jobs dependent on the allocated

additional resource (people).

Computation experiments were started on the computer PIV 1,4 GHz, RAM 512 under

Windows XP.

139

Fig. 16 Answer for the question implemented in predicate opc_g(150,200) – Yes (Example_2)

Fig. 17 Gantt’s charts for decision from fig. 16 (Example_2).

Fig. 18 Answer for the question implemented in predicate opc_g(5,400) – No (Example_2)

140

Fig. 19 Answer for the question implemented in predicate opc_g(7,200) – Yes (Example_2)

Fig. 20 Gantt’s charts for decision from fig. 19 (Example_2).

Fig. 21 Answer for the question implemented in predicate opc_g(12,200)–Yes (Example_2)

141

Fig 22.Gantt’s charts for decision from fig. 21 (Example_2).

Fig. 23 Answer to the question implemented in predicate opc_g(10,200)–Yes (Example_2)

142

7. CONCLUSIONS

Proposing declarative environments (CLP, SQL) for the building and implementing of the decision

support system for scheduling, as well as suggesting the ASP model for the provision of the application

service to SMEs seem to be as interesting and promising approach. Above all, declarative environments

offer splendid possibilities of modeling and simple implementation of the decision support system.

Advantages of this solution include easy decision support for scheduling of literally any method of

production organization, and also considering additional resource constraints, for instance, manpower or

specialized machines, and their effect on the way the jobs are performed, e.g., shortening the processing

time.

Further, the application of the ASP model provides not only the decision support system but also both

the know-how and the follow -up service to the enterprise.

The proposed approach can be considered as a contribution to scheduling problems with

external/additional resources applied in SMEs, where this kind of resources can have influence

on production and delivery schedules. That is especially important in the context of cheap, fast

and user friendly decision support in SMEs. Great flexibility of the proposed approach (ASP

model) and practically unlimited possibilities of asking questions through creating predicates

cannot be overestimated. What is more, the whole decision system can be built in one

modeling and programming declarative environment and deliver to customer by ASP, which

lower costs and adds to the solution effectiveness.

REFERENCES
1. LIAO S.Y., WANG H.Q., LIAO L.J.: An extended formalism to constraint logic

programming for decision analysis, Knowledge-based Systems 15, 2002 , pp 189-202.

2. PEABODY G.: Interpath connects Customer to SAP Applications via World-class

Communications, Data Center and Support Infrastructure Aberdeen Group 2000.

3. LACITY M.C., HIRSCHHEIM L, WILLCOCKS: Realizing outsourcing expectations,

Information Systems Management 11(4), 1994, pp 7-18.

4. BISDORFF R., LAURENT S. “Industrial linear optimization problem solved by

constraint logic programming”, European Journal of Operational Research 84 (1), 1995,

pp 82-95.

5. LAMMA E., MELLO P., MILANO M. “A distributed constrained-based scheduler”,

Artificial Intelligence in Engineering 11,1997, pp 91-105.

6. LEE H.G., LEE G. Yu., “Constraint logic programming for qualitative and quantitative

constraint satisfaction problems”, Decision Support Systems 16 (1), 1996, pp 67-83.

7. RYU U. Young .”Constraint logic programming framework for integrated decision

supports” Decision Support Systems 22, 1998, pp 155-170.

8. BENNETT Ch. TIMBRELL G.: Application Services Providers: Will They Succeed ?,

Information Systems Frontiers, pp 195 – 211, Kluwer Academic Publishers, 2000.

9. http://www.cs.kuleuven.ac.be/

10. “XML Schema part 0”, W3C Working Draft, 2000 (www.w3.org/TR/xmlschema-0)

