Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: This study aims to examine the properties of polypropylene (PP) composites filled with household waste tea (camellia sinensis) (HWT) to development of their mechanical properties and also to gain the economic value of HWT. Design/methodology/approach: HWT was grinded using a disk mill in the finely powder form. Prepared finely tea powders were characterized compositional and morphologically by using Fourier transform infrared spectroscopy, X-Ray diffractometer and scanning electron microscope. PP composites were prepared at different proportions of HWT ranging from 0 wt% to 40 wt% with two particle sizes (<30 µm and <60 µm) by high-volume energy mixer so as to evaluate the effect of the HWT filler on mechanical properties. Findings: The mechanical properties of composites were evaluated through modulus of elasticity, ultimate tensile strength and flexural strength in terms of filler particle size and filler contents. The results showed that the modulus of elasticity of composites increased as a function of additional HWT particles and the highest value was observed which was containing 40 wt% filler contents. Research limitations/implications: Clearly, the maximum flexural and tensile strength of HWT particles filled composites were observed for 10 wt% HWT loading into PP composite increased when compared to other filler contents (20-40 wt%). Practical implications: For potential applications in the plastics industry, such as outdoor deck floors, cladding and siding, indoor furniture etc., it is desirable to form polymer composite systems by combining phases with polymer, so as to reduce expenses of materials, to have strength and, at the same time to be biodegradable. Originality/value: Despite HWT was chemically untreated, the mechanical properties of composites increased it would appear that it can be a renewable alternative material for manufacturing of PP matrix composites.
Wydawca
Rocznik
Tom
Strony
12--18
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
- Graduate School of Natural and Applied Science, Material Science and Engineering Department, Izmir Katip Celebi University, Izmir, Turkey
autor
- Material Science and Engineering Department, Izmir Katip Celebi University, Izmir, Turkey
autor
- Material Science and Engineering Department, Izmir Katip Celebi University, Izmir, Turkey
Bibliografia
- [1] K. Satyanarayana, G. Arizaga, F. Wypych, Biodegradable Composites Based on Lignocellulosic fibres-An overview, Progress in Polymer Science 34 (2009) 982-1021.
- [2] H. Essabir, E. Hilali, A. Elgharad, H. El Minor, A. Imad, A. Elamraoui, O. Al Gaoudi, Mechanical and thermal properties of bio-composites based on polypropylene reinforced with Nut-shells of Argan particles, Materials and Design 49 (2013) 442-448.
- [3] F. Al-Oqla, S.M. Sapuan, Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry, Journal of Cleaner Production 66 (2014) 347-354.
- [4] European Commission, Reference Document on the Best Available Techniques for Waste Incineration, Integrated Pollution Prevention and Control, Brussel, 2006.
- [5] F. Saltabas, Y. Soysal, V.S. Yıldız, Thermal Disposal Methods of Household Solid Waste and Applicability in Istanbul, Scientific National Symposium, Symposium of Solid Waste Management in Turkey, TURKAY’2009, Istanbul-Turkey, 2009.
- [6] W.L.E. Magalhaes, S.A. Pianaro, C.J.F. Granado, K.G. Satyanarayana, Preparation and characterization of polypropylene/heart of peach palm sheath composite, Journal of Applied Polymer Science 127/2 (2013) 1285-1294.
- [7] B.D. Mattos, A.L. Miss, P.H. Cademartori, E.A. Lima, W.L. Magalhaes, D.A. Gatto, Properties of Polypropylene Composites Filled With a Mixture of Household Waste of Mate-Tea and Wood Particles, Construction and Building Materials 61 (2014) 60-68.
- [8] L. Yusriah, S.M. Sapuan, E. S. Zainudin, M. Mariatti, M. Jawaid, Thermophysical, thermal degradation, and flexural properties of betel nut husk fiber reinforced vinyl ester composites, Polymer Composites 37 (2015) 2008-2017.
- [9] J. Zhang, H. Zhang, J. Zhang, Evaluation of liquid ammonia treatment on surface characteristics of hemp fiber, Cellulose 21/1 (2014) 569-579.
- [10] F. Mizi, D. Dai, B. Huang, Fourier transform infrared spectroscopy for natural fibres, Fourier Transform– Materials Analysis. Intech (2012) 45-68.
- [11] Y. Zhang, C. Yin, Y. Zhang, H. Wu, Synthesis and characterization of cellulose carbamate from wood pulp, assisted by supercritical carbon dioxide, BioResources 8/1 (2013) 1398-1408.
- [12] N. Reddy, Y. Yang, Structure and properties of high quality natural cellulose fibers from cornstalks, Polymer 46/15 (2005) 5494-5500.
- [13] L. Segal, J. Greely, A.E. Martin, L.M. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer, Textile Research Journal 29/10 (1959) 786-794.
- [14] H. Matsumura, J. Sugiyama, W.G. Glasser, Cellulosic nanocomposites. I. Thermally deformable cellulose hexanoates from heterogeneous reaction, Journal of Applied Polymer Science 78 (2000) 2242-2253.
- [15] W.L.E. Magalhaes, S.A. Pianaro, C.J.F. Granado, K.G. Satyanarayana, Preparation and characterization of polypropylene/heart of peach palm sheath composite, Journal of Applied Polymer Science 127/2 (2013) 1285-1294.
- [16] A. Ashori, A. Nourbakhsh, Preparation and characterization of polypropylene/wood flour/nanocla y composites, European Journal of Wood and Wood Products 69/4 (2011) 663-666.
- [17] Caykur Tea Operating Data, www.tarim.gov.tr/sgb/Be lgeler/ SagMenuVeriler/CAYKUR.pdf, Access date: 01.03.2015.
- [18] U.C. Yildiz, S. Yildiz, E.D. Gezer, Mechanical properties and decay resistance of wood-polymer composites prepared from fast growing species in Turkey, Bioresource Technology 96/9 (2005) 1003- 1011.
- [19] S. Panthapulakkal, M. Sain, Agro-residue reinforced high-density polyethylene composites: fiber characterization and analysis of composite properties, Composites Part A: Applied Science and Manufacturing 38/6 (2007) 1445-1454.
- [20] ASTM D3039, Standard test method for tensile properties of polymer matrix composite materials, ASTM International, West Conshohocken, PA, 2014, www.astm.org.
- [21] ASTM D790, Standard Test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, PA, 2010, www.astm.org.
- [22] C.M. Popescu, M.C. Popescu, G. Singurel, C. Vasile, D.S. Argyropoulos, S. Willfor, Spectral characterization of eucalyptus wood. Applied spectroscopy 61/11 (2007) 1168-1177.
- [23] Z.T. Liu, Y.N. Yang, L.L. Zhang, Z.W. Liu, H.P. Xiong, Study on the cationic modification and dyeing of ramie fiber, Cellulose 14/4 (2007) 337-345.
- [24] A.C. Kılınc, M. Atagur, O. Ozdemir, I. Sen, N. Kucukdogan, K. Sever, O. Seydibeyoglu, M. Sarikanat, Y. Seki, Manufacturing and characterization of vine stem reinforced high density polyethylene composites, Composites Part B: Engineering 91 (2016) 267-274.
- [25] F. Carrillo, X. Colom, J.J. Sunol, J. Saurina, Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres, European Polymer Journal 40/9 (2004) 2229-2234.
- [26] S.Y. Oh, D.I. Yoo, Y. Shin, G. Seo, FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide, Carbohydrate Research 340/3 (2005) 417-428.
- [27] M.A.S. Spinace, C.S. Lambert, K.K.G. Fermoselli, M.A. De Paoli, Characterization of lignocellulosic curaua fibres, Carbohydrate Polymers 77/1 (2009) 47-53.
- [28] S.Y. Fu, X.Q. Feng, B. Lauke, Y.W. Mai, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate polymer composites, Composites Part B: Engineering 39/6 (2008) 933-961.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-663ba079-6d30-4826-9d6a-d052b13d0d59