Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We establish an accurate and efficient scheme with four-order accuracy for solving three-dimensional (3D) acoustic wave equation. First, the local one-dimensional method is used to transfer the 3D wave equation into three one-dimensional wave equations. Then, a new scheme is obtained by the Padé formulas for computation of spatial second derivatives and the correction of the truncation error remainder for discretization of temporal second derivative. It is compact and can be solved directly by the Thomas algorithm. Subsequently, the Fourier analysis method and the Lax equivalence theorem are employed to prove the stability and convergence of the present scheme, which shows that it is conditionally stable and convergent, and the stability condition is superior to that of most existing numerical methods of equivalent order of accuracy in the literature. It allows us to reduce computational cost with relatively large time step lengths. Finally, numerical examples have demonstrated high accuracy, stability, and efficiency of our method.
Wydawca
Czasopismo
Rocznik
Tom
Strony
528--552
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Applied Mathematics and Mechanics, Ningxia University, Yinchuan, 750021, China
autor
- Institute of Applied Mathematics and Mechanics, Ningxia University, Yinchuan, 750021, China
- Basic Courses Teaching and Research Department, Yingkou Institute of Technology, Yingkou, 115100, China
autor
- Institute of Applied Mathematics and Mechanics, Ningxia University, Yinchuan, 750021, China
Bibliografia
- [1] W. Liang, C. Yang, Y. Wang, and H. Liu, Acoustic wave equation modeling with new time-space domain finite difference operators, Chin. J. Geophys. 56 (2013), no. 10, 3497–3506, DOI: https://doi.org/10.6038/cjg20131024.
- [2] Y. Liu and M. Sen, Acoustic VTI modeling with a time-space domain dispersion-relation-based finite-difference scheme, Geophys. 75 (2010), no. 3, 11–17, DOI: https://doi.org/10.1190/1.3374477.
- [3] Y. Jiang and Y. Ge, An explicit fourth-order compact difference scheme for solving the 2D wave equation, Adv. Differ. Equ. 2020 (2020), 415, DOI: https://doi.org/10.1186/s13662-020-02870-z.
- [4] Y. Liu and K. Mrinal, A new time-space domain high-order finite-difference method for the acoustic wave equation, J. Comput. Phys. 228 (2009), no. 23, 8779–8806, DOI: https://doi.org/10.1016/j.jcp.2009.08.027.
- [5] B. Finkelstein and R. Kastner, Finite difference time domain dispersion reduction schemes, J. Comput. Phys. 221 (2017), 422–438, DOI: https://doi.org/10.1016/j.jcp.2006.06.016.
- [6] H. L. Liao and Z. Z. Sun, Maximum norm error estimates of efficient difference schemes for second-order wave equations, J. Comput. Appl. Math. 235 (2011), no. 8, 2217–2233, DOI: https://doi.org/10.1016/j.cam.2010.10.019.
- [7] M. Zapata, R. Balam, and J. Urquizo, High-order implicit staggered grid finite differences methods for the acoustic wave equation, Numer Methods Partial Differ. Equ. 34 (2018), no. 2, 602–625, DOI: https://doi.org/10.1002/num.22217.
- [8] S. Britt, E. Turkel, and S. Tsynkov, A high order compact time/space finite difference scheme for the wave equation with variable speed of sound, J. Sci. Comput. 76 (2018), no. 2, 777–811, DOI: https://doi.org/10.1007/s10915-017-0639-9.
- [9] D. Yang, P. Tong, and X. Deng, A central difference method with low numerical dispersion for solving the scalar wave equation, Geophys. Prospect. 60 (2012), no. 5, 885–905, DOI: https://doi.org/10.1111/j.1365-2478.2011.01033.x.
- [10] J. Shragge and B. Tapley, Solving the tensorial 3D acoustic wave equation, Geophys. 82 (2017), no. 4, 1–58, DOI: https://doi.org/10.1190/GEO2016-0691.1.
- [11] R. Shukla and X. Zhong, Derivation of high-order compact finite difference schemes for non-uniform grid using polynomial interpolation, J. Comput. Phys. 204 (2005), no. 2, 404–429, DOI: https://doi.org/10.1016/j.jcp.2004.10.014.
- [12] S. Britt, S. Tsynkov, and E. Turkel, Numerical solution of the wave equation with variable wave speed on nonconforming domains by high-order difference potentials, J. Comput. Phys. 354 (2017), 26–42, DOI: https://doi.org/10.1016/j.jcp.2017.10.049.
- [13] K. Lipnikov, G. Manzini, and M. Shashkov, Mimetic finite difference method, J. Comput. Phys. 257 (2014), 1163–1227, DOI: https://doi.org/10.1016/j.jcp.2013.07.031.
- [14] Y. Abdulkadir, Comparison of finite difference schemes for the wave equation based on dispersion, J. Appl. Math. Phys. 3 (2015), no. 11, 1544–1562, DOI: https://doi.org/10.4236/jamp.2015.311179.
- [15] C. Chu and P. Stoffa, Implicit finite-difference simulation of seismic wave propagation, Geophys. 77 (2012), no. 2, 57–67, DOI: https://doi.org/10.1190/GEO2011-0180.1.
- [16] D. Peaceman and H. Rachford, The numerical solution of parabolic and elliptic differential equations, J. Soc. Indust. Appl. Math. 3 (1955), no. 1, 28–41, DOI: https://doi.org/10.1137/0103003.
- [17] S. Das, W. Liao and A. Gupta, An efficient fourth-order low dispersive finite difference scheme for a 2D acoustic wave equation, J. Comput. Appl. Math. 258 (2014), no. 3, 151–167, DOI: https://doi.org/10.1016/j.cam.2013.09.006.
- [18] W. Liao, On the dispersion, stability and accuracy of a compact higher-order finite difference scheme for 3D acoustic wave equation, J. Comput. Appl. Math. 270 (2014), 571–583, DOI: https://doi.org/10.1016/j.cam.2013.08.024.
- [19] W. Liao, P. Yong, H. Dastour, and J. Huang, Efficient and accurate numerical simulation of acoustic wave propagation in a 2D heterogeneous media, Appl. Math. Comput. 321 (2018), 385–400, DOI: https://doi.org/10.1016/j.amc.2017.10.052.
- [20] K. Li and W. Liao, An efficient and high accuracy finite-difference scheme for the acoustic wave equation in 3D heterogeneous media, J. Comput. Sci. 40 (2020), 101063, DOI: https://doi.org/10.1016/j.jocs.2019.101063.
- [21] H. L. Liao and Z. Z. Sun, A two-level compact ADI method for solving second-order wave equations, Int. J. Comput. Math. 90 (2013), no. 7, 1471–1488, DOI: https://doi.org/10.1080/00207160.2012.754016.
- [22] K. Li, W. Liao, and Y. Lin, A compact high-order alternating direction implicit method for three-dimensional acoustic wave equation with variable coefficient, J. Comput. Appl. Math. 361 (2019), 113–129, DOI: https://doi.org/10.1016/j.cam.2019.04.013.
- [23] A. Samarskii, Local one-dimensional difference schemes for multi-dimensional hyperbolic equations in an arbitrary region, USSR Comput. Math. Math. Phys. 4 (1964), no. 4, 21–35, DOI: https://doi.org/10.1016/0041-5553(64)90002-3.
- [24] S. Kim and H. Lim, High-order schemes for acoustic waveform simulation, Appl. Numer. Math. 57 (2007), no. 4, 402–414, DOI: https://doi.org/10.1016/j.apnum.2006.05.003.
- [25] N. Yun, C. Sun, and C. Sim, An optimal nearly analytic splitting method for solving 2D acoustic wave equations, J. Appl. Geophys. 177 (2020), 104029, DOI: https://doi.org/10.1016/j.jappgeo.2020.104029.
- [26] W. Zhang, L. Tong, and E. Chung, A new high accuracy locally one-dimensional scheme for the wave equation, J. Comput. Appl. Math. 236 (2011), no. 6, 1343–4353, DOI: https://doi.org/10.1016/j.cam.2011.08.022.
- [27] W. Zhang and J. Jiang, A new family of fourth-order locally one-dimensional schemes for the three-dimensional wave equation, J. Comput. Appl. Math. 311 (2017), 130–147, DOI: https://doi.org/10.1016/j.cam.2016.07.020.
- [28] C. Sim, C. Sun, and N. Yun, A nearly analytic symplectic partitioned Runge-Kutta method based on a locally one-dimensional technique for solving two-dimensional acoustic wave equations, Geophys. Prospec. 68 (2020), no. 4, 1253–1269, DOI: https://doi.org/10.1111/1365-2478.12924.
- [29] W. Zhang, A new family of fourth-order locally one-dimensional schemes for the 3D elastic wave equation, J. Comput. Appl. Math. 348 (2018), 246–260, DOI: https://doi.org/10.1016/j.cam.2018.08.056.
- [30] S. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys. 103 (1992), no. 1, 16–42, DOI: https://doi.org/10.1016/0021-9991(92)90324-R.
- [31] D. Yang, Iterative Solution for Large Linear System, Academic Press, New York, 1991.
- [32] D. Smith, Numerical solution of partial differential equations, finite difference methods, Math. Comp. 48 (1985), no. 178, 834–835, DOI: https://doi.org/10.2307/2007849.
- [33] G. Zhang, Two conservative and linearly-implicit compact difference schemes for the nonlinear fourth-order wave equation, Appl. Math. Comput. 401 (2021), 126055, DOI: https://doi.org/10.1016/j.amc.2021.126055.
- [34] R. Mohanty and V. Gopal, A new off-step high order approximation for the solution of three-space dimensional nonlinear wave equations, Appl. Math. Model. 37 (2013), no. 5, 2802–2815, DOI: https://doi.org/10.1016/j.apm.2012.06.021.
- [35] D. Li and W. Sun, Linearly implicit and high-order energy-conserving schemes for nonlinear wave equations, J. Sci. Comput. 83 (2020), 65, DOI: https://doi.org/10.1007/s10915-020-01245-6.
- [36] M. Fardi, I. Pishkar, J. Alidousti, and Y. Khan, Numerical investigation of the MHD suction-injection model of viscous fluid using a kernel-based method, Arch. Appl. Mech. 91 (2021), 4205–4221, DOI: https://doi.org/10.1007/s00419-021-02003-2.
- [37] Y. Khan and N. Faraz, Simple use of the Maclaurin series method for linear and non-linear differential equations arising in circuit analysis, Int. J. Comput. Math. Electr. Electron. Eng. 40 (2021), no. 3, 593–601, DOI: https://doi.org/10.1108/COMPEL-08-2020-0286.
- [38] Y. Khan, A Hausdorff fractal Nizhnik-Novikov-Veselov model arising in the incompressible fluid, Int. J. Numer. Methods Heat Fluid Flow 32 (2022), no. 5, 1674–1685, DOI: https://doi/org/10.1108/HFF-03-2021-0232.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-663aed99-ba25-4bc3-919f-646389b2499a