PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zagadnienie przyczepności w betonie zbrojonym: przegląd stanu wiedzy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
The bond behaviour in reinforced concrete: state of the art
Języki publikacji
PL EN
Abstrakty
PL
W artykule omówiono wyniki ostatnich prac badawczych dotyczących przyczepności matrycy cementowej do prętów zbrojeniowych w betonie. Celem tej prezentacji było wyjaśnienie niektórych ważnych problemów i przedstawienie stanu tego ważnego dla betonów konstrukcyjnych zagadnienia. Szczegółowo omówiono różne rodzaje wiązań oraz czynniki mające wpływ na każdy z nich. Właściwości mechaniczne betonu mają decydujący wpływ na przyczepność, a ponieważ zniszczenie wiązań może nastąpić przez rozciąganie, ścinanie i zginanie więc wytrzymałość tego kompozytu uważana jest za najważniejszy czynnik. Równocześnie liczne badania wykazują znaczny wpływ skrępowania betonu na wytrzymałość wiązania matrycy ze zbrojeniem. Z przeglądu ostatnich prac badawczych autorzy wyciągają wniosek konieczności wprowadzenia norm na badania przyczepności, które ułatwią osiągnięcie dalszego postępu w zrozumieniu właściwości tego wiązania.
EN
In the paper the results of recent studies of the reinforcement bars-cement matrix bond are presented, in order to clarify some important issues and to provide the state of the art of this subject. Different kinds of bond were discussed and the factors influencing each of them were described in details. The concrete properties is governing the bond behaviour and since bond failure can occur by tensile and shearing of the concrete, the strength of this composite is considered to be the decisive factor. Simultaneously, the significant effect on the bond strength of the concrete confinement is clearly shown in several studies. On the basis of recent studies discussion, the authors came to the conclusion of the necessity of the standard tests introduction, which will help to make further progress in the understanding of this bond behaviour.
Czasopismo
Rocznik
Strony
93--105
Opis fizyczny
Bibliogr. 52 poz., il.
Twórcy
  • Faculty of Civil Engineering, University Technology Malaysia, Johor, Malaysia
autor
  • Faculty of Civil Engineering, University Technology Malaysia, Johor, Malaysia
  • Faculty of Civil Engineering, University Technology Malaysia, Johor, Malaysia
autor
  • Faculty of Civil Engineering, University Technology Malaysia, Johor, Malaysia
Bibliografia
  • 1. CEB–FIP, ‘Model Code 1990’, p. 437, Thomas Telford, London 1993, ISBN 0 7277 1696.
  • 2. J. Cairns, G. A. Plizzari, „Towards a harmonized European bond test”. Materials and Structures / Mat. Constr., 36, October, pp. 498–506 (2003).
  • 3. ACI Committee 408,”Bond and development of straight reinforcing bars in tension (ACI408–03)”. ACI, Farmington Hills, MI, p. 49, 2003.
  • 4. Luaay Hussein, ”Analytical Modeling of Bond Stress at steel Concrete Interface Due to Corrosion”, M. Sc. Thesis, Ryerson University, 2011.
  • 5. Y. Goto, „Cracks formed in concrete around deformed tension bars”, J. ACI, 68, 4, 244_51 (1971).
  • 6. Huanzi Wang, “An analytical study of bond strength associated with splitting of concrete cover”, Engineering Structures, 31, 968-975 (2009).
  • 7. ACI Committee 408, “Bond Under Cyclic Loads”, Journal of the American concrete Institute, 1992.
  • 8. Sungnam Hong, Sun–Kyu Park, „Uniaxial Bond Stress–Slip Relationship of Reinforcing Bars in Concrete”, Advances in Materials Science and Engineering, Article ID 328570, 12 pages (2012).
  • 9. R. A. Treece, J. O. Jirsa, „Bond Strength of Epoxy–Coated Reinforcing Bars”, ACI Materials Journal, 86, 2, 167–174 (1989).
  • 10. ACI 408.2R–92, „Bond under cyclic loads”, ACI Committee 408, 32 (2005).
  • 11. A. Mohamed Safan, „Behaviour of fiber reinforced concrete beams with spliced tension steel reinforcement”, Structural Engineering and Mechanics, 43, 5, 623–636 (2012).
  • 12. A. P. Clark, „Bond of Concrete Reinforcing Bars” ACI J., Proceedings V., 46, Nov., pp. 161–184 (1949).
  • 13. Soroushian, Parviz; Choi, Ki–Bong; Park, Gill–Hyun; Aslani, Farhang, „Bond of Deformed Bars to Concrete: Effects of Confinement and Strength of Concrete”, ACI Material Journal, 88, 3, 227–232 (1991).
  • 14. ACI 318R–08, “Building code requirements for structural concrete (318–08) and commentary”, ACI Committee 318, 471, 2008.
  • 15. J. Zuo, D. Darwin, „Splice Strength of Conventional and High Relative Rib Area Bars in Normal and High–Strength Concrete”, ACI Structural J., 97, 4, 630–641 (2000).
  • 16. ACI Committee 408, „Abstract of: state–of–the–art–report: bond under cyclic loads”, ACI Materials J., 88, 6, 669–673 (1991).
  • 17. C. O. Orangun, J. O. Jirsa, J. E. Breen, „Reevaluation of test data on development length and splices”, ACI Journal, Proceedings, 74, 3, 114–122 (1977).
  • 18. R. Tepfers, „A theory of bond applied to overlapping tensile reinforcement splices for deformed bars”, 73, 2, 328, Division of Concrete Structures, Chalmers University of Technology, Goteborg, Sweden 1973.
  • 19. M. Alavi–Fard, H. Marzouk, „Bond Behavior of High Strength Concrete Under Reversed Pull–out Cyclic Loading”, Canadian Journal of Civil Engineering, 29, 2, 191–200 (2002).
  • 20. J. Zuo, D. Darwin, „Bond Strength of High Relative Rib Area Reinforcing Bars”, SM Report No. 46, p. 350, University of Kansas Center for Research, Lawrence, Kansas, USA 1998.
  • 21. H. Martin, „Bond Performance of Ribbed Bars (Pull–Out–Tests) – Influence of Concrete Composition and Consistency”, pp. 289–299, International Conference – Bond in Concrete, Paisley, Scotland 1982.
  • 22. R. Eligehausen, „Bond in Tensile Lapped Splices of Ribbed Bars with Straight Anchorages”, Publication 301, p. 118, German Institute for Reinforced Concrete, Berlin 1979 (in German).
  • 23. Oan Chul Choi, Woong Se Lee, „Interfacial Bond Analysis of Deformed Bars to Concrete”, ACI Structural Journal/November–December 2002.
  • 24. G. Rehm, „Uber die Grunlagen des Verbundes Zwischen Stahl und Beton” Deutscher Ausschuss fijr Stahlbeton, Heft 138, Wilhelm Emest und Sohn, Berlin, Germany 1961.
  • 25. L. A. Lutz, P. Gergely, G. Winter, „Mechanics of Bond and Slip of Deformed Reinforcing Bars in Concrete”, Research Report No. 324, Department of Civil Engineering, Cornell University, New York, USA 1966.
  • 26. D. Darwin, K. G. Eheneze, „Effect of Deformation Height and Spacing on Bond Strength of Reinforcing Bars”, ACI Structural J., 90, 6, 646–657 (1993).
  • 27. Task Group Bond Models, “Bond of Reinforcement in Concrete”, State of the art report, Federal Institute of Technology Lausanne, Swiss 2000.
  • 28. D. Darwin, M. L. Tholen, E. K. Idun, J. Zuo, „Splice Strength of High Relative Rib Area Reinforcing Bars”, ACI Structural J., 93, 1, 95–107 (1996).
  • 29. P. R. Jeanty, D. Mitchell, M. S. Mirza, „Investigation of „Top Bar‟ Effects in Beams”, ACI Structural Journal, 85, 3, 251–257 (1988).
  • 30. J. J. Luke, B. S. Hamad, J. O. Jirsa, J. E. Breen, “The Influence of Casting Position on Development and Splice Length of Reinforcing Bars”, Research Report No. 242–1, p. 153, Center for Transportation Research, Bureau of Engineering Research, University of Texas at Austin, Texas, USA 1981.
  • 31. L. Amleh, S. Mirza, „Corrosion Influence on Bond between Steel and Concrete”, ACI Structural Journal, 96, 3, 415–423 (1999).
  • 32. A. Einea, T. Yamane, M. K. Tadros, „Grout–filled pipe splices for precast concrete construction”, Precast/Prestr Concrete I. J., 40, 1, 82–93 (1995).
  • 33. R. E. Untrauer, R. L. Henry, „Influence of normal pressure on bond strength”, ACI J., 65, 5, 577–85 (1965).
  • 34. P. J. Robins, I. G. Standish, „The influence if lateral pressure upon anchorage bond” Mag. of Concr. Res., 36, 129 (1984).
  • 35. M. Moosavi, A. Jafari, A. Khosravi, „Bond of cement grouted reinforcing bars under constant radial pressure”, Cem. Concr. Comp., 27, 11, 103–9 (2005).
  • 36. C. T. Lim,”The effect of pitch distance of steel spiral reinforcement to the performance of grouted sleeve connector under direct tensile load”, Undergraduate, University Technology Malaysia 2010.
  • 37. G. S. Lee, „Parametric studies of sleeve connector using steel pipe with spiral steel for precast concrete connection”, Bsc. University Technology Malaysia 2009.
  • 38. G. K. Loo, „Parametric study of grout–filled splice sleeve integrated with flexible aluminum tube for precast concrete connection”, Bsc. University Technology Malaysia 2009.
  • 39. J. H. Ling, A. B. Abd. Rahman, Z. Abd. Hamid, “Performance of corrugated aluminum sleeve connector under direct tensile load”, 2nd engineering conference on sustainable engineering (ENCON 08). 18–19 December Kuching, Sarawak, Malaysia: University Malaysia Sarawak (UNIMAS) 2008.
  • 40. H. Y. Loh, „Development of grouted splice sleeve and its performance under axial tension”, Msc. University Technology, Malaysia 2008.
  • 41. J. H. Ling, A. B. Abd. Rahman, Z. Abd. Hamad, et al., “Structural performance of splice connector for precast concrete structures”, In: Joint conference 7th Asia Pacific Structural Engineering & Construction Conference (APSEC 2009) & 2nd European Asian Civil 2009.
  • 42. A. J. Tibbetts, M. G. Oliva, L. C. Bank, „Durable fiber reinforced polymer bar splice connections for precast concrete structures”, Composites & Ploycon. Tampa, FL USA: American composites manufacturers association; 15–17 January 2009.
  • 43. J. Cairns, “An Analysis of the Ultimate Strength of Lapped Joints of Compression Reinforcement,” Mag. Concr. Res., 31, 106, 19–27 (1979).
  • 44. O. C. Choi, W. S. Lee, „Interfacial Bond Analysis of Deformed Bars to Concrete”, ACI Structural J., 99, 6, 750–755 (2002).
  • 45. K. Nagatomo, T. Kaku, „Bond behavior of deformed bars under lateral compressive and tensile stress”, Proceeding of an international Conference, Riga Technical University 1992.
  • 46. T. Ichinose, Y. Kanayama, Y. Inoue, J.E Bolander Jr., “size effect on bond strength of deformed bars”, Institute of technology, Gokiso, Showa, Nagoya 466–8555, Japan 2004.
  • 47. Robert Park, T. Paulay, „Reinforced concrete structure”, Textbook, ISBN 0–471–65917–7 (1975).
  • 48. J. Adajar, T. Yamaguchi, H. Imai, „An Experimental Study on the Tensile Capacity of Vertical Bar Joints in a Precast Shearwall” Proceedings, Japan Concrete Institute, 15, 2, 1255–1261 (1993).
  • 49. Feng Xu, Zhimin Wu, Jianjun Zheng, Yu Hu, Qingbin Li,”Experimental Study on the Bond Behavior of Reinforcing Bars Embedded in Concrete Subjected to Lateral Pressure”, Journal of Material in Civil Engineering © ASCE, January 2012.
  • 50. RILEM/CEB/FIP, „Bond test for reinforcing steel: 2. Pullout Test”, Recommendation RC 6, 1978.
  • 51. H. Martin, P. Noakowski, „Bond behavior in reinforced concrete” (only available in German), Research Report IV, München Technical University, also ‘Verbundverhalten von Betonstählen, Untersuchungen auf der Grunlage von Ausziehversuchen’, Shriftenreihe of the Deutscher Ausschuss für Stahlbeton, Heft 319, Berlin 1981.
  • 52. J. Cairns, K. Jones, „Influence of rib geometry on strength of lapped joints: an experimental and analytical study”, Mag. Concr. Res., 47, 172, 253–262 (1995), Discussion, 49, 180, 259–262 (1997).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66376a35-3597-40fc-b036-111a624474a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.