PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of fiber metal laminates - literature research

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper refers the general idea of composite materials especially Fiber Metal Laminates (FMLs) with respect to low-velocity impact incidents. This phenomenon was characterized by basic parameters and energy dissipation mechanisms. Further considerations are matched with analytical procedures with reference to linearized spring-mass models, impact characteristics divided into energy correlations (global flexure, delamination, tensile fracture and petaling absorbed energies) and set of motion second order differential equations. Experimental tests were based on analytical solutions for different types of FML - GLARE type plates and were held in accordance to ASTM standards. The structure model reveals plenty of dependences related to strain rate effect, deflection represented by the correlations among plate and intender deformation, separate flexure characteristics for aluminium and composite, contact definition based on intender end-radius shape stress analysis supported by FSDT, von Karman strains as well as CLT. Failure criteria were conformed to layers specifications with respect to von Misses stress-strain criterion for aluminium matched with Tsai-Hill or Puck criterion for unidirectional laminate. At the final stage numerical simulation were made in FEM programs such as ABAQUS and ANSYS. Future prospects were based on the experiments held over 3D-fiberglass (3DFG) FMLs with magnesium alloy layers which covers more favorable mechanical properties than FMLs.
Rocznik
Strony
1355--1370
Opis fizyczny
Bibliogr. 77 poz.
Twórcy
autor
  • Department of Strength of Materials, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Łódź, Poland
Bibliografia
  • [1] Vlot, A., Gunnink, J. W.: Fibre Metal Laminates: An Introduction, Springer Science & Business Media, 2011.
  • [2] Morinière, F. D., Alderliesten, R. C., Yarmohammad Tooski, M., Benedictus, R.: Damage evolution in GLARE fibre-metal laminate under repeated lowvelocity impact tests, Central European Journal of Engineering, 2, 4, 603-611, 2012.
  • [3] Morinière, F. D., Alderliesten, R. C., Sadighi, M., Benedictus, R.: An integrated study on the low-velocity impact response of the GLARE fibre-metal laminate, Composite Structures, 100, 89-103, 2013.
  • [4] Vlot, A., Gunnink, J. W.: Fibre metal laminates - An introduction, Kluywer Academic Publisher, 2001.
  • [5] Cantwell, W. J., Morton, J.: The impact resistance of composite materials—a review, Composites Part A, 22, 347-362, 1991.
  • [6] Shivakumar, K. N., Elber, W., Illg, W.: Prediction of low-velocity impact damage in thin circular laminates, AIAA J, 23, 442-449, 1985.
  • [7] Banat, D., Kołakowski, Z., Mania, R. J.: Investigations of FML profile buckling and post-buckling behaviour under axial compression, Thin-Walled Structures, 107, 335-344, 2016.
  • [8] Mania, R. J., Kolakowski, Z., Bienias, J., Jakubczak, P., Majerski, K.: Comparative study of FML profiles buckling and postbuckling behaviour under axial loading, Composite Structures, 134, 216-225, 2015.
  • [9] Ramkumar, R. L., Chen, P. C.: Low-velocity impact response of laminated plates, AIAA J, 21, 1448-1452, 1983.
  • [10] Das, R., Chanda, A., Brechou, J., Banerjee, A.: Impact behaviour of fibre-metal laminates, Dynamic Deformation, Damage and Fracture in Composite Materials and Structures, 17, 491-542, 2016.
  • [11] Manikandan, P., Chai, G. B.: Low velocity impact response of fibre-metal laminates - A review. Composite Structures., 107, 363-381, 2013.
  • [12] Lisowski, B.: Impact of Fiber Metal Laminates members - literature research, BSc. Thesis. Lodz University of Technology, Faculty of Mechanical Engineering, 2017.
  • [13] Laliberte, J. F., Poon, C., Straznicky, P. V. et al.: Post-impact fatigue damage growth in fiber-metal laminates. International Journal of Fatigue., 24, 249-255, 2002.
  • [14] Soltani, P., Keikhosravy, M., Oskouei, R. H., Soutis, C.: Studying the tensile behaviour of GLARE laminates: a finite element modelling approach, Applied Composite Materials, 18, 4, 271-282, 2011.
  • [15] Vermeeren, C. A. J. R.: An historic overview of the development of fibre metal laminates, Appl. Composite Materials., 10, 189-205, 2003.
  • [16] Vlot, A.: Impact properties of fibre metal laminates, Composites Engineering, 3, 911-927, 1993.
  • [17] Vogelesang, L. B., Vlot, A.: Development of fibre metal laminates for advanced aerospace structures, Journal of Mater Process Technology, 103(1-5), 2000.
  • [18] Alderliesten, R., Rans, C., Benedictus, R.: The applicability of magnesium based fibre metal laminates in aerospace structures, Composites Science and Technology, 68, 14, 2983-2993, 2008.
  • [19] Naghipour, P., Schneider, J., Bartsch, M., Hausmann, J., Voggenreiter, H.: Fracture simulation of CFRP laminates in mixed mode bending, Engineering Fracture Mechanics, 76, 18, 2821-2833, 2009.
  • [20] Wagner, L.: Mechanical surface treatments on titanium, aluminum and magnesium alloys, Materials Science and Engineering: A, 263, 2, 210-216, 1999.
  • [21] Tarpani, J. R., Maluf, O., Gatti, M. C. A.: Charpy impact toughness of conventional and advanced composite laminates for aircraft construction, Materials Research, 12, 4, 395-403, 2009.
  • [22] Sadighi, M., Alderliesten, R. C., Benedictus, R.: Impact resistance of fibermetal laminates: a review, International Journal of Impact Engineering., 49, 77-90, 2012.
  • [23] Seyed Yaghoubi, A., Liu, Y., Liaw, B.: Low-velocity impact on GLARE 5 fibermetal laminates: influences of specimen thickness and impactor mass, Journal of Aerospace Engineering, 25, 3, 409-420, 2012.
  • [24] Parnanen, T., Kanerva, M., Sarlin, E., Saarela, O.: Debonding and impact damage in stainless steel fibre metal laminates prior to metal fracture, Composite Structures, 119, 777-786, 2015.
  • [25] Khan, S. U., Alderliesten, R. C., Benedictus, R.: Delamination in fiber metal laminates (GLARE) during fatigue crack growth under variable amplitude loading. International Journal of Fatigue., 33(??), 1292-1303, 2011.
  • [26] Sinmazçelik, T., Avcu, E., Bora, M. Ö., Çoban, O.: A review: fibre metal laminates background bonding types and applied test methods, Materials and Design, 32, 3671-3685, 2011.
  • [27] Hashagen, F., de Borst, R., de Vries, T.: Delamination behavior of spliced fiber metal laminates, Part 2. Numerical investigation, Composite Structures, 46, 2, 147-162, 1999.
  • [28] Remmers, J. J. C., de Borst, R.: Delamination buckling of fibre metal laminates, Composites Science and Technology, 61, 15, 2207-2213, 2001.
  • [29] Alderliesten, R. C.: Fatigue crack propagation and delamination growth in Glare, Ph. D. Thesis, Delft University of Technology, Faculty of Aerospace Engineering 2005.
  • [30] Chai, G. B., Zhu, S.: A review of low-velocity impact on sandwich structures, Proc Inst Mech Engrs, Part L: Journal of Materials Design and Applications, 225, 4, 207-230, 2011.
  • [31] Dean, J. et al.: Energy absorption during projectile perforation of thin steel plates and the kinetic energy of ejected fragments, International Journal of Impact Engineering, 36, 10, 1250-1258, 2009.
  • [32] Fan, J., Guan, Z. W., Cantwell, W. J.: Numerical modelling of perforation failure in fibre metal laminates subjected to low velocity impact loading. Composite Structures, 93, 9, 2430-2436, 2011.
  • [33] Yanxiong, L., Benjamin, L.: Effects of constituents and lay-up configuration on drop-weight tests of fiber-metal laminates, Applied Composite Materials, 17, 1, 43-62, 2010.
  • [34] Bikakis, G. S. E.: Simulation of the dynamic response of GLARE plates subjected to low velocity impact using a linearized spring-mass model, Aerospace Science and Technology, 64, 24-30, 2017.
  • [35] Guocai, W., Jenn-Ming, Y., Hahn, H. T.: The impact properties and damage tolerance of bi-directionally reinforced fiber metal laminates, Journal of Material Science, 42, 948-957, 2007.
  • [36] Bikakis, G. S. E.: Response of GLARE fiber-metal laminates under radial in-plane preloading and lateral indentation, Journal of Reinforced Plastics and Composites, 34, 17, 1392-1402, 2015.
  • [37] Bikakis, G. S. E.: FEM analysis and analytical formulas to predict the indentation response of circular simply supported GLARE plates, Journal Composite Materials, 49, 20, 2459-2468, 2015.
  • [38] Bikakis, G. S. E, Savaidis, A.: FEM simulation of simply supported GLARE plates under lateral indentation loading and unloading, Theoretical and Applied Fracture Mechanics., 83, 2-10, 2016.
  • [39] Vlot, A.: Impact loading on fibre metal laminates, International Journal of Impact Engineering, 18, 3, 291-307, 1996.
  • [40] Hoo Fatt, M. S., Lin, C., Revilock, Jr D. M., Hopkins, D. A.: Ballistic impact of GLARE fiber-metal laminates, Composite Structures, 61(1-2), 73-88, 2003.
  • [41] Olsson, R.: Closed form prediction of peak load and delamination onset under small mass impact, Composite Structures, 59, 341-349, 2003.
  • [42] Zheng, D., Binienda, W. K.: Effect of permanent indentation on the delaminating threshold for small mass impact on plates, International Journal of Solids Structures, 44, 8143-8158, 2007.
  • [43] Tsamasphyros, G. J., Bikakis, G. S.: Dynamic response of circular GLARE fibermetal laminates subjected to low velocity impact, Journal of Reinforced Plastics and Composites, 30, 11,, 978-987, 2011.
  • [44] Tsamasphyros, G. J., Bikakis, G. S.: Quasi-static response of circular GLARE plates subjected to low velocity impact, Mechanical Advanced Material Structures, 21, 39-46, 2014.
  • [45] Tsamasphyros, G. J., Bikakis, G. S.: Analytical modeling to predict the low velocity impact response of circular GLARE fiber-metal laminates, Aerospace Science Technology, 29, 1, 28-36, 2013.
  • [46] Tsamasphyros, G. J., Bikakis, G. S.: Finite element modeling and analytical simulation of circular GLARE fiber-metal laminates subjected to lateral indentation, Journal of the Serbian Society for Computational Mechanics, 3, 2, 67-80, 2009.
  • [47] Tsamasphyros, G. J., Bikakis, G. S.: Analytical modeling of circular GLARE laminated plates under lateral indentation, Advanced Composites Letters, 18, 1, 11- 19, 2009.
  • [48] Morinière, F. D., Alderliesten, M., Benedictus, R.: Low-velocity impact energy partition in GLARE,sis of multibody systems, Journal of Mechanical Design, 112, 369-376, 1990.
  • [49] Ursenbach, D. O., Vaziri, R., Delfosse, D.: An engineering model for deformation of CFRP plates during penetration, Composite Structures, 32, 14, 197-202, 1995.
  • [50] Hashin Z.: Failure criteria for unidirectional composites. Journal of Applied Mechanics., 47(??), 329-334, 1980.
  • [51] Tao, G., Xia, Z.: Fatigue behavior of an epoxy polymer subjected to cyclic shear loading, Material Science Engineering: A, 486, 12, 38-44, 2008.
  • [52] Davies, G. A. O., Hitchings, D., Ankersen, J.: Predicting delamination and debonding in modern aerospace composite structures, Composites Science and Technology, 66, 6, 846-854, 2006.
  • [53] Sutherland, L.S., Guedes Soares, C.: Contact indentation of marine composites. Composite Structures, 70, 3, 287-294, 2005.
  • [54] ASTM D5420.: Impact resistance of flat, rigid plastic specimen by means of a striker impacted by a falling weight (Gardner Impact), ASTM International, 2004.
  • [55] Hagenbeek, M.: Characterisation of fibre metal laminates under thermomechanical loadings, Ph. D. Thesis. Delft University of Technology, Faculty of Aerospace Engineering, 2005.
  • [56] Iaccarino, P., Langella, A., Caprino, G.: A simplified model to predict the tensile and shear stress-strain behaviour of fibreglass/aluminium laminates, Composite Science Technology, 67, 9, 1784-1793, 2007.
  • [57] O'Higgins, R. M., McCarthy, M. A., McCarthy, C. T.: Comparison of open hole tension characteristics of high strength glass and carbon fibre-reinforced composite materials, Composite Science Technology, 68, 13, 2770-2778, 2008.
  • [58] Zhu, S., Chai, G. B.: Low-velocity impact response of fibre metal laminates: experimental and finite element analysis. Composite Science Technology., 72(??), 1793-1802, 2012.
  • [59] Shokrieh, M. M., Omidi, M. J.: Investigating the transverse behaviour of Glass Epoxy composites under intermediate strain rates, Composite Structures, 93, 2, 690- 696, 2011.
  • [60] Rodríguez-Martínez, J. A., Rusinek, A., Arias, A.: Thermo-viscoplastic behaviour of 2024-T3 aluminium sheets subjected to low velocity perforation at different temperatures, Thin-Wall Structures, 49, 7, 819-832, 2011.
  • [61] Zhang, X., Boscolo, M., Figueroa-Gordon, D., Allegri, G., Irving, P. E.: Fail-safe design of integral metallic aircraft structures reinforced by bonded crack retarders, Engineering Fracture Mechanics, 76, 1, 114-133, 2009.
  • [62] Roeder, B. A., Sun, C. T.: Dynamic penetration of alumina/aluminum laminates: experiments and modeling, International Journal of Impact Engineering, 25, 2, 169-185, 2001.
  • [63] Laliberté, J., Poon, C., Straznicky, P. V.: Low-velocity impact damage in GLARE fibremetal laminates. In: Proceedings of the ICCM-12, Paris, France, 1999.
  • [64] Caprino, G., Spataro, G., Del Luongo, S.: Low-velocity impact behaviour of fibreglass-aluminium laminates, Composites Part A: Applied Science Manufacturing, 35, 5, 605-616, 2004.
  • [65] ASTM D7136.: Standard test method for measuring the damage resistance of a fibrereinforced polymer matrix composite to a drop-weight impact event, ASTM International, 2015.
  • [66] Bienias, J., Jakubczak, P., Dadej, K.: Low-velocity resistance of aluminium glass laminates-Experimental and numerical investigation, Composite structures, 156, 339-348, 2016.
  • [67] Orifici, A. C., Herszberg, I., Thomson, R. S.: Review of methodologies for composite material modelling incorporating failure, Composite Structures, 86(1-3), 194-210, 2008.
  • [68] Asaee, Z., Taheri, F.: Experimental and numerical investigation into the influence of stacking sequence on the low-velocity impact response of new 3D FMLs, Composite Structures, 140, 136-146, 2016.
  • [69] Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models, Composites Science Technology, 58, 7, 1045-1067, 1998.
  • [70] Sitnikova, E., Guan, Z. W., Schleyer, G. K., Cantwell, W. J.: Modelling of perforation failure in fibre metal laminates subjected to high impulsive blast loading, International Journal of Solids Structures, 51, 18, 3135-3146, 2014.
  • [71] Yu, G. C., Wu, L. Z., Ma, L., Xiong, J.: Low velocity impact of carbon fibre aluminium laminates, Composite Structures, 119, 757-766, 2015.
  • [72] Shengqing, Z., Gin Boay Chai: Low-velocity impact response of fibre-metal laminates - Experimental and finite element analysis, Composites Science of Technology, 72, 1793-1802, 2012.
  • [73] Asaee, Z., Shadlou, S., Taheri, F.: Low-velocity impact response of fiberglass/ magnesium FMLs with a new 3D fiberglass fabric, Composite Structures, 122, 155-165, 2015.
  • [74] Botelho, E. C., Silva, R. A., Pardini, L. C., Rezende, M. C.: A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Material Resources, 9, 3, 247-256, 2006.
  • [75] Sadighi, M., Hosseini S. A.: Finite element simulation and experimental study on mechanical behavior of 3D woven glass fiber composite sandwich panels, Composites part B Engineering, 55, 158-166, 2013.
  • [76] Cortes, P., Cantwell, W.: Fracture properties of a fiber-metal laminates based on magnesium alloy, Journal of Material Science, 39, 3, 1081-1083, 2004.
  • [77] Cortes, P., Cantwell, W.: The fracture properties of a fibre-metal laminate based on magnesium alloy, Composites part B Engineering, 37, 2, 163-170, 2006.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6633d6d8-c332-4911-a7d0-f21576792497
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.