PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal load of tuned piston

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of modernization (constructional changing) of piston of the combustion engine on its thermal load is the main goal of this project. Tuning can be done by different modernization processes to improve engine operating parameters including efficiency. In this project the piston was tuned by redesigning geometry (some piston walls) and by mass reduction. Changes were verified by thermal analysis via ANSYS software. It can be proved as follows: - mass reduction by almost 30%, - increasing average piston speed of 10%, - decreasing mean effective pressure of 18%, - creasing max temperature of the piston body about 40%. The analysis shows the possibility of the piston tuning but with respect to thermal load which can lead to the engine damage.
Rocznik
Strony
342--347
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Wroclaw University of Technology, Faculty of Mechanical Engineering, Division of Motor Vehicles and Internal Combustion Engines, Wybrzeże St. Wyspiańskiego 27, PL-50-370 Wrocław, Poland
Bibliografia
  • [1] A. Ambrozik, An analysis of working cycles of four-stroke engines, Publishing House of Kielce University of Technology, Kielce 2010.
  • [2] R.A. Benson, The Thermodynamics and Gas Dynamics of Internal-Combustion Engines, vol. 1, Oxford, Clarendon Press, 1982.
  • [3] G.P. Blair, Design and simulation of four-stroke engines, SAE Paper, Warrendale 1996.
  • [4] R. Flierl, S. Schmitt, G. Kleiner, H.J. Esch, H. Dismon, Univalve–afully variable mechanical valve lift system for future internal combustion engines, Magazine ATZ. 4 (2011) 34–39.
  • [5] J. Grajnert, S. Kwaśniowski, Z.J. Sroka, Identification of heat transfer dynamic model for diesel engines, Conference MotAuto 2000, Proceedings vol. 1, Sofia 2000.
  • [6] Z. Gronostajski, P. Bandoła, T. Skubiszewski, Argon-shielded hot pressing of titanium alloy (Ti6Al4V) powders, Acta of Bioengineering and Biomechanics 12 (1) (2010) 41–46.
  • [7] L. Guzzella, Ch.H. Onder, in: Introduction to Modeling and Control of Internal Combustion Engine Systems, 2nd Edition, Springer, 2010.
  • [8] J.B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill International Editions, Singapore, 1989.
  • [9] H. Hiereth, P. Prenninger, Charging the Internal Combustion Engine, Springer Editor, Wien - N.Y, 2007.
  • [10] A. Janicka, B. Mendyka, W. Walkowiak, W. Szczepaniak, Compression ignition engine fuelled with methyl ester of animal fatty acids and conventional oil fuel blends paths emission. Polish Journal of Environmental Studies 16 (3B) (20070 pp. 192–195.
  • [11] A. Kaź́mierczak, Physical aspects of wear of the piston-ring-cylinder set of combustion engines. Proceedings of the Institution of Mechanical Engineers. Part D, Journal of Automobile Engineering 222 (D11) (2008) pp. 2103–2119.
  • [12] C. Kolanek, M. Kułażyński, Catalytic method of limitation of toxicity of diesel engines, Polish Journal of Environmental Studies 15 (6) (2006) 81–85.
  • [13] K. Kuhlbach, J. Mehring, D. Bormann, R. Friedfeld, Zylinder-kopf mit integriertem Abgaskrummer fur Downsizing-Kon-zept, Magazine MTZ. 69 (2009) 286–293.
  • [14] S. Kwaśniowski, Z.J. Sroka, W. Zabłocki, Thermal loads modelling of combustion engine components (in Polish), Publishing House of Wroclaw University of Technology, Wrocław, 1999.
  • [15] G.P. Merker, Ch. Schwartz, R. Teichmann, Combustion Engines Development, Springer Editor, 2009.
  • [16] J. Mysłowski, J. Kołtun, Elasticity of piston combustion engines (in Polish), Publishing House WNT, Warszawa, 2000.
  • [17] A.K. Oppenheim, A.L. Kuhl, A.K. Packard, J.K. Hedrick, W.P. Johnson, Model and Control of Heat Release in Engines, Am. J. Engine Combustion Flow Diagnostics SAE Paper 1157 (1996) 15–23.
  • [18] J.I. Ramos, Internal Combustion Engine Modelling, American Publication Corporation, Hemisphere, 1989.
  • [19] E. Robertis, G.F. Moreira, R.A. Silva, C.A. Achete, Thermal behaviour study of biodiesel standard reference materials, Journal Thermal Analysis and Calorimetry 106 (2011) 347–354.
  • [20] E. Rusiński, J. Czmochowski, D. Pietrusiak, Problems of steel construction modal models identification, Eksploatacja I Niezawodność Maintenance and Reliability 14 (1) (2012) 54–61.
  • [21] L. Sitnik, Wear kinetics theory and its potential application to assessment of wear of machine parts, Wear 265 (7/8) (2008) 1038–1045.
  • [22] A. Smith, Stroke of genius for gasoline downsizing, Ricardo Q Review (2008) Q3.
  • [23] Z.J. Sroka, Thermodynamic cycle of combustion engine with hydrogen fuelling, Journal of KONES 14 (3) (2007) 573–578.
  • [24] Z.J. Sroka, Tuning of combustion engines (in Polish), Report of Institute of Machine Design and Operation Ser. SPR nr 31, Wroclaw, 2004.
  • [25] Z.J. Sroka, Thermal load of internal combustion engine fuelled with nitrogen monoxide on example of engine of Fiat Punto 1,2 8V, Journal of Combustion Engines 44 (4) (2005) 51–59.
  • [26] S. Wiśniewski, Thermal loads of combustion engines (in Polish), Publishing House of WKŁ, Warszawa, 1972.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-662f5c2f-7d1f-4fc7-97f7-918918bcf813
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.