Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The purpose of this report is to present the similarities and differences between modified sine-Gordon models used in description of the curved Josephson junctions. The leading dynamical variable in this system is a gauge invariant phase difference of the macroscopic wave functions of the superconducting electrodes that form the junction. Findings: The main finding of this article is the observation that in the model used in description of junctions with quickly varying curvatures the significant part of the kink energy is confined in the curved regions of the junction. Research limitations/implications: The paper is limited to the description of the dynamics of fluxions in the long Josephson junctions. These junctions due to small transverse sizes (smaller than the Josephson penetration depth) can be considered as a one dimensional systems. Practical implications: It seems that junctions with appropriate geometry will find applications in future electronic devices. It is expected that curved Josephson junctions can be used in order to store a binary data. Originality/value: The main idea of the paper is to use a Riemann geometry in order to describe the influence of the curvature on the kink motion in the junction.
Wydawca
Rocznik
Tom
Strony
18--25
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
- Institute of Physics UP, ul. Podchorążych 2, 30-084 Kraków, Poland
autor
- Institute of Physics UP, ul. Podchorążych 2, 30-084 Kraków, Poland
Bibliografia
- [1] B.D. Josephson, Possible new effects in superconductive tunneling, Physics Letters 1/7 (1962) 251-253, doi: 10.1016/0031-9163(62)91369-0.
- [2] P.W. Anderson, J.M. Rowell, de Haas-van Alphen Effect and Internal Field in Iron, Physical Review Letters 10/6 (1963) 227-229, doi: 10.1103/PhysRev Lett.10.227.
- [3] A.R. Bishop, T. Schneider, Solitons and Condensed Matter Physics, Springer-Verlag, Berlin, 1981;
- [4] A.S. Davydov, Solitons in Molecular Systems, Reidel, Dordrecht, Netherlands, 1985;
- [5] A. Barone, G. Paterno, Physics and Applications of the Josephson Effect, Wiley, New York, 1982;
- [6] B.D. Josephson, Supercurrents through barriers, Advances in Physics 14/56 (1965) 419-451, doi: 10.1080/ 00018736500101091;
- [7] A. Barone, F. Esposito, C.J. Magee, A.C. Scott, Theory and Applications of the Sine-Gordon Equation, La Rivista del Nuovo Cimento 1/2 (1971) 227-267, doi: 10.1007/BF02820622;
- [8] J.D. Gibbon, I.N. James, I.M. Moroz, The Sine-Gordon Equation as a Model for a Rapidly Rotating Baroclinic Fluid, Physica Scripta 20/3-4 (1979) 402-408, doi: 10.1088/0031-8949/20/3-4/015.
- [9] J. Swihart, Field Solution for a Thin-Film Superconducting Strip Transmission Line, Journal of Applied Physics 32/3 (1961) 451, doi: 10.1063/1.1736025.
- [10] M.J. Ablowitz, P.A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge University Press, Cambridge, 1999;
- [11] N.F. Pederson, Solitons in Josephson transmission lines, in: S.E. Trullinger et al. eds., Solitons, Elsevier Science Publishers, Amsterdam, 1986;
- [12] L.A. Ferreira, B. Piette, W.J. Zakrzewski, Wobbles and other kink-breather solutions of the sine-Gordon model, Physical Review E 77/3 (2008) 036613 1-9, doi: 10.1103/PhysRevE.77.036613;
- [13] L.A. Ferreira, B. Piette, W.J. Zakrzewski, Dynamics of the topological structures in inhomogeneous media, Journal of Physics: Conference Series 128/1 (2008) 012027 1-10, doi: 10.1088/1742-6596/128/1/012027;
- [14] V.G. Ivancevic, T.T. Ivancevic, Sine-Gordon Solitons, Kinks and Breathers as Physical Models of Nonlinear Excitations in Living Cellular Structures, Journal of Geometry and Symmetry in Physics 31 (2013) 1-56, doi: 10.7546/jgsp-31-2013-1-56;
- [15] S.V. Kuplevakhsky, A.M. Glukhov, Static solitons of the sine-Gordon equation and equilibrium vortex structure in Josephson junctions, Physical Review B 73 (2006) 024513 1-12, doi: 10.1103/PhysRevB.73. 024513;
- [16] S.V. Kuplevakhsky, A.M. Glukhov, Exact analytical solution of the problem of current-carrying states of the Josephson junction in external magnetic fields, Physical Review B 76 (2007) 174515 1-15, doi: 10.1103/Phys RevB.76.174515;
- [17] M. Toda, Initial Value Problems of the Sine-Gordon Equation and Geometric Solutions, Annals of Global Analysis and Geometry 27/3 (2005) 257-271, doi: 10.1007/s10455-005-1582-9.
- [18] H. Arodź, Expansion in the width and collective dynamics of a domain wall, Nuclear Physics B 509/1-2 (1998) 273-293, doi: 10.1016/S0550-3213(97)00497-5;
- [19] T. Dobrowolski, Construction of curved global vortex, Annals of Physics (NY) 324/12 (2009) 2473-2489, doi: 10.1016/j.aop.2009.09.006;
- [20] T. Dobrowolski, Geometry of vortices and domain walls, Journal of Geometry and Symmetry in Physics 22 (2011) 1-12, doi: 10.7546/jgsp-22-2011-1-12;
- [21] J.J. Sławianowski, V. Kovalchuk, B. Gołubowska, A. Martens E.E. Roko, Quantized excitations of internal affine modes and their influence on Raman spectra, Acta Physica Polonica B 41/1 (2010) 165-218;
- [22] P.I. Marinov, I.M. Mladenov, A relation between the cylindric fluid membranes and the motions of planar curves, Journal of Geometry and Symmetry in Physics 27 (2012) 93-102, doi: 10.7546/jgsp-27-2012-93-102;
- [23] N. Ogawa, Curvature-dependent diffusion flow on a surface with thickness, Physical Review E 81 (2010) 061113 1-8, doi: 10.1103/PhysRevE.81.061113;
- [24] T. Dobrowolski, Precise tuning of the kink width in the long Josephson junction, Archives of Materials Science and Engineering 33/2 (2008) 107-110;
- [25] T. Dobrowolski, An influence of the curvature on the kink dynamics in the spherical Josephson junction, Archives of Materials Science and Engineering 39/2 (2009) 116-120.
- [26] T. Dobrowolski, Curved Josephson junction, Annals of Physics (N.Y.) 327/5 (2012) 1336-1354, doi: 10.1016/ j.aop.2012.02.003.
- [27] T. Dobrowolski, The fluxion in a curved Josephson junction, Journal of Geometry and Symmetry in Physics 34 (2014) 13-26, doi: 10.7546/jgsp-34-2014-13-26.
- [28] T. Dobrowolski, Kink profile in a curved space, Acta Physica Polonica B 46/8 (2015) 1457-1472, doi: 10.5506/APhysPolB.46.1457.
- [29] T. Dobrowolski, A. Jarmoliński, Perturbation scheme for a fluxon in a curved Josephson junction, Physical Review E 96 (2017) 012214, in press.
- [30] E. Mann, Systematic perturbation theory for sineGordon solitons without use of inverse scattering methods, Journal of Physics A: Mathematical and General 30/4 (1997) 1227-1241, doi: 10.1088/03054470/30/4/023;
- [31] H. Kleinert, I. Mustapic, Summing the spectral representations of Pöschl-Teller and Rosen-Morse fixed energy amplitudes, Journal of Mathematical Physics 33/2 (1992) 643-662, doi: 10.1063/1.529800;
- [32] R.J. Flesch, S.E. Trullinger, Green’s functions for nonlinear Klein-Gordon kink perturbation theory, Journal of Mathematical Physics 28/7 (1987) 16191631, doi: 10.1063/1.527468.
Uwagi
PL
Błędna numeracja bibliografii
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-661f7ce6-13a6-4cb4-b618-0abae5ec427d