PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modern measures of risk reduction in industrial processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article describes standard safety-protection layers according to EN 61511 standard. Their aim is to reduce risk, thus to decrease the frequency of occurrence of threatening incidents and/or consequences of such incidents. The aim of the article was to present currently developed means of increasing process safety, which are not included in the standards. There are described: advisory diagnostic systems, fault tolerant control systems, process simulators for operators training and IT systems supporting safety. Such components can be treated as additional layers of process protection. A simple example comparing the operation of alarm and diagnostic systems as well as the example of the fault tolerant control system of the level in the drum boiler in sugar factory are given.
Twórcy
  • Warsaw University of Technology, Faculty of Mechatronics, Institute of Automatic Control and Robotics, ul. Św. Andrzeja Boboli 8, 02-525, Poland
  • Warsaw University of Technology, Faculty of Mechatronics, Institute of Automatic Control and Robotics, ul. Św. Andrzeja Boboli 8, 02-525, Poland
  • Warsaw University of Technology, Faculty of Mechatronics, Institute of Automatic Control and Robotics, ul. Św. Andrzeja Boboli 8, 02-525, Poland
Bibliografia
  • [1] J. Errington, D. V. Reising, C. Burns, and ASM Joint R & D Consortium, Effective alarm management practices, ASM Consortium: Phoenix, 2009.
  • [2] S. Bajpai and J. P. Gupta, “Terror-Proofing Chemical Process Industries”, Process Safety and Environmental Protection, vol. 85, no. 6, 2007, 559–565 DOI: 10.1205/psep06046.
  • [3] M. Blanke, C. Frei, F. Kraus, R. J. Patton, and M. Staroswiecki. “Fault-tolerant Control Systems”. In: K. Åström, P. Albertos, M. Blanke, A. Isidori, W. Schaufelberger, and R. Sanz, eds., Control of Complex Systems, 165–189, Springer London, 2001.
  • [4] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and Fault-Tolerant Control, Springer-Verlag: Berlin Heidelberg, 2006.
  • [5] J. Chen and R. J. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems, The International Series on Asian Studies in Computer and Information Science, Springer US, 1999.
  • [6] J. Chen and R. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems, Springer, 2012.
  • [7] Engineering equipment and materials users association EEMUA Publication 191: Alarm Systems – A Guide to Design, Management & Procurement, London, 2007.
  • [8] J. Gertler, Fault detection and diagnosis in engineering systems, Marcel Dekker: New York, 1998.
  • [9] R. Isermann, Fault-diagnosis systems: an introduction from fault detection to fault tolerance, Springer: Berlin; New York, 2006.
  • [10] J. Jiang and X. Yu, “Fault-tolerant control systems: A comparative study between active and passive approaches”, Annual Reviews in Control, vol. 36, no. 1, 2012, 60–72 DOI: 10.1016/j.arcontrol.2012.03.005.
  • [11] C. Jochum, “Can Chemical Plants be Protected Against Terrorist Attacks?”, Process Safety and Environmental Protection, vol. 83, no. 5, 2005, 459–462 OI: 10.1205/psep.04189.
  • [12] S. Kabir, M. Walker, Y. Papadopoulos, E. Rüde, nd P. Securius, “Fuzzy temporal fault tree analysis of dynamic sy stems”, International Journal of Approximate Reasoning, vol. 77, 2016, 20–37 DOI: 10.1016/j.ijar.2016.05.006.
  • [13] S. Karnouskos, “Stuxnet worm impact on industrial cyber-physical system security”. In: IECON 011 – 37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, 2011, 4490–4494 DOI: 10.1109/IECON.2011.6120048.
  • [14] F. Khan, S. Rathnayaka, and S. Ahmed, “Methods and models in process safety and risk management: Past, present and future”, Process Safety and Environmental Protection, vol. 98, 2015, 116–147 DOI: 10.1016/j.psep.2015.07.005.
  • [15] J. Korbicz and J. M. Kościelny, eds., Modeling, diagnostics and process control: implementation in the DiaSter system, Springer-Verlag: Berlin, Heidelberg, 2010.
  • [16] J. Korbicz, J. M. Kościelny, Z. Kowalczuk, and W. Cholewa, eds., Diagnostyka procesów: modele, metody sztucznej inteligencji, zastosowania, (Diagnostics of processes: models, artificial intelligence methods, applications), Wydawnictwa Naukowo-Techniczne: Warszawa, 2002 (in Polish).
  • [17] K. T. Kosmowski, ed., Podstawy bezpieczeństwa funkcjonalnego (Basics of functional safety), Wydawnictwo Politechniki Gdańskiej: Gdańsk, 2016 (in Polish).
  • [18] J. M. Kościelny, Diagnostyka zautomatyzowanych procesów przemysłowych (Diagnostics of automated industrial processes), Akademicka Oficyna Wydawnicza EXIT: Warszawa, 2001 (in Polish).
  • [19] J. M. Kościelny and M. Bartyś, “The Requirements for a New Layer in the Industrial Safety Systems”. In: IFAC-PapersOnLine, vol. 48, Paris, France, 2015, 1333–1338 DOI: 10.1016/j.ifacol.2015.09.710.
  • [20] S. Leonhardt and M. Ayoubi, “Methods of fault diagnosis”, Control Engineering Practice, vol. 5, no. 5, 1997, 683–692 DOI: 10.1016/S0967-0661(97)00 050-6.
  • [21] E. K. Mihailidou, K. D. Antoniadis, and M. J. Assael, “The 319 Major Industrial Accidents Since 1917”, International Review of Chemical Engineering, vol. 4, no. 6, 2012, 529–540.
  • [22] T. Missala, Analiza wymagań i metod postępowania przy ocenie ryzyka i określaniu wymaganego poziomu nienaruszalności bezpieczeństwa (Analysis of requirements and proceeding methods for risk evaluation and determining the required safety integrity level), Oficyna Wydawnicza PIAP: Warszawa, 2009 (in Polish).
  • [23] P. Okoh and S. Haugen, “A study of maintenancerelated major accident cases in the 21st century”, Process Safety and Environmental Protection, vol. 92, no. 4, 2014, 346–356 DOI: 10.1016/j.psep.2014.03.001.
  • [24] Y. Papadopoulos, “Model-based system monitoring and diagnosis of failures using statecharts and fault trees”, Reliability Engineering & System Safety, vol. 81, no. 3, 2003, 325–341 DOI: 10.1016/S0951-8320(03)00095-4.
  • [25] R. J. Patton, P. M. Frank, and R. N. Clark, eds., Issues of Fault Diagnosis for Dynamic Systems, Springer-Verlag: London, 2000.
  • [26] M. Pawlak, J. M. Kościelny, and P. Wasiewicz, “Method of increasing the reliability and safety of the processes through the use of fault tolerant control systems”, Eksploatacja i Niezawodnosc –Maintenance and Reliability, vol. 17, no. 3, 2015, 398–407 DOI: 10.17531/ein.2015.3.10.
  • [27] E. Piesik, M. Śliwiński, and T. Barnert, “Determining and verifying the safety integrity level of the safety instrumented systems with the uncertainty and security aspects”, Reliability Engineering & System Safety, vol. 152, 2016, 259–272 DOI: 10.1016/j.ress.2016.03.018.
  • [28] S. Simani, C. Fantuzzi, and R. J. Patton, Modelbased Fault Diagnosis in Dynamic Systems Using Identification Techniques, Advances in Industrial Control, Springer-Verlag: London, 2003.
  • [29] M. Syfert, P. Wnuk, and J. M. Kościelny, “DiaSter –Intelligent system for diagnostics and automatic control support of industrial processes”, Journal of Automation, Mobile Robotics and Intelligent ystems, vol. 5, no. 4, 2011, 41–46.
  • [30] P. Tatjewski, J. M. Kościelny, W. Nagórko, and L. Trybus. “Wybrane układy i systemy automatyki przemysłowej: systemy sterowania, sterowanie zaawansowane, diagnostyka, zarządzanie alarmami (Selected schemes and control systems of industrial automation: control systems, advanced control, diagnostics, alarm management)”. In: K. Malinowski and R. Dindorf, eds., Postępy automatyki i robotyki, volume 2, 350–382. Wydawnictwo Politechniki Świętokrzyskiej, Kielce, 2011 (in Polish).
  • [31] T. Barnert, K. Kosmowski and M. Śliwiński, “Security Aspects in Verification of the Safety Integrity Level of Distributed Control and Protection Systems”, Journal of KONBiN, vol. 6, no. 3, 2008, 25–40 DOI: 10.2478/v10040-008-0056-0.
  • [32] L. Urbas, A. Krause, and J. Ziegler, Process control systems engineering, Oldenbourg Industrieverl: München, 2012.
  • [33] H.-J. Uth, “Trends in major industrial accidents in Germany”, Journal of Loss Prevention in the Process Industries, vol. 12, no. 1, 1999, 69–73 DOI: 10.1016/S0950-4230(98)00039-4.
  • [34] M. Mahmoud, J. Jiang, and Y. Zhang, Active Fault Tolerant Control Systems: Stochastic Analysis and Synthesis, Lecture Notes in Control and Information Sciences, Springer-Verlag: Berlin Heidelberg, 2003.
  • [35] E. Zio and T. Aven, “Industrial disasters: Extreme events, extremely rare. Some reflections on the treatment of uncertainties in the assessment of the associated risks”, Process Safety and Environmental Protection, vol. 91, no. 1, 2013, 31–45 DOI: 10.1016/j.psep.2012.01.004.
  • [36] Technical Standard: “PN-EN 61508: Bezpieczeństwo funkcjonalne elektrycznych / elektronicznych programowalnych elektronicznych systemów związanych z bezpieczeństwem (Functional safety of electrical / electronic /programmable electronic safety-related systems)”, PKN, Warszawa, 2003 (in Polish).
  • [37] Technical Standard: “PN-EN 61511: Bezpieczeństwo funkcjonalne. Przyrządowe systemy bezpieczeństwa do sektora przemysłu procesowego (Functional safety. Safety instrumented systems for the sector of process industry)”, PKN, Warszawa, 2005 (in Polish).
  • [38] Technical Standard: “IEC 61508, Functional safety of electrical/ electronic/programmable electronic safety-related systems”, International Electrotechnical Commission, 1998.
  • [39] Technical Standard: “IEC 61511, Functional safety – Safety instrumented systems for the proces industry sector”, International Electrotechnical Commission, 2003.
  • [40] Technical Standard: “IEC 62061, Safety of machinery – Functional safety of safety-related electrical, electronic and programmable electronic control systems”, International Electrotechnical Commission, 2005.
  • [41] Technical Standard: “IEC 61513, Nuclear power plants – Instrumentation and control for systems important to safety – General requirements for systems”, International Electrotechnical Commission, 2001.
  • [42] “ANSI/ISA-18.2, Management of Alarm Systems for the Process Industries”, ISA 18 Committee, 2009.
  • [43] Crescenzi F. et al.,”Vessel and In-Vessel Components Design Upgrade of the FAST Machine”, Fusion Engineering and Design 88 (9-10), pp. 2048-2051, 2013.
  • [44] Health and Safety Executive, The explosion and fire at the Texaco refinery, Milford Haven, 24 July 1994: a report of the investigation by the Health and Safety Executive into the explosion and fires on the Pembroke Cracking Company Plant at the Texaco Refinery, Milford Haven on 24 July 1994., HSE Books: Sudbury, 1997.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-661ce29f-ebaf-46ae-b81d-ce480bea2093
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.