PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and Microstructure Evolution of Continuous Unidirectional Solidification Tin Bronze Alloy at Different Continuous Casting Speed

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mold temperature of the downward continuous unidirectional solidification (CUS) cannot be controlled higher than the liquidus of alloys to be cast. Therefore, the continuous casting speed becomes the main parameter for controlling the growth of columnar crystal structure of the alloy. In this paper, the tin bronze alloy was prepared by the downward CUS process. The microstructure evolution of the CUS tin bronze alloy at different continuous casting speeds was analysed. In order to further explain the columnar crystal evolution, a relation between the growth rate of columnar crystal and the continuous casting speed during the CUS process was built. The results show that the CUS tin bronze alloy mainly consists of columnar crystals and equiaxed crystals when the casting speed is low. As the continuous casting speed increases, the equiaxed crystals begin to disappear. The diameter of the columnar crystal increases with the continuous casting speed increasing and the number of columnar crystal decreases. The growth rate of columnar crystal increases with increasing of the continuous casting speed during CUS tin bronze alloy process.
Rocznik
Strony
118--122
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
autor
  • College of Materials Science and Engineering, Yangtze Normal University, China
Bibliografia
  • [1] Okayasu, M. & Takeuchi, S. (2017). Mechanical properties of cast Al–Mg5 alloy produced by heated mold continuous casting. International Journal of Metalcasting. 12(2), 298-306. DOI: 10.1007/s40962-017-0163-6.
  • [2] Soda, H., McLean, A., Wang, Z. & Motoyasu, G. (1995). Pilot-scale casting of single-crystal copper wires by the Ohno continuous casting process. Journal of Materials Science. 30, 5438-5448. DOI: 10.1007/BF00351555.
  • [3] Wang, Y.H., Xiao, L.R., Zhao, X.J., Hu, W., Song, Y.F., Zhang, W. & Zhou, H. (2015). Microstructure and mechanical properties of columnar-grained copper produced by the Ohno continuous casting technique. Materials Science and Engineering: A. 639, 122-130. DOI: 10.1016/j.msea.2015.04.099.
  • [4] Yang, F., Wang, J., Yu, J., Zhou, Z., Wang, B., Tu, T., Ren X., Deng, K. & Ren, Z. (2019). Microstructure and mechanical properties of Ni-based superalloy K418 produced by the continuous unidirectional solidification process. Journal of Materials Engineering and Performance. 28(10), 6483-6491. DOI: 10.1007/s11665-019-04385-5.
  • [5] Flemings, M.C. (1974). Solidification processing. Metallurgical Transactions. 5, 2121-2134. DOI: 10.1007/ bf02643923.
  • [6] Luo, J.H. (2018). Formation mechanism of surface segregation in heated mold continuous casting Al–Cu Alloy. Light Metals 2018. 435-439. DOI: 10.1007/978-3-319-72284-9_59.
  • [7] Okayasu, M., Takeuchi, S., Wu, S. & Ochi, T. (2016). Effects of Sb, Sr, and Bi on the material properties of cast Al Si–Cu alloys produced through heated mold continuous casting. Journal of Mechanical Science and Technology. 30(3), 1139-1147. DOI: 10.1007/s12206-016-0218-2.
  • [8] Ohno, A. (1986). Continuous casting of single crystal ingots by the O.C.C process. JOM. 38(1), 14-16. DOI: 10.1007/BF03257948.
  • [9] Okayasu, M., Takasu, S. & Yoshie, S. (2010). Microstructure and material properties of an Al–Cu alloy provided by the Ohno continuous casting technique. Journal of Materials Processing Technology. 210, 1529-1535. DOI: 10.1016/j.jmatprotec.2010.04.012.
  • [10] Al-Ganainy, G.S., Fawzy, A. & El-Salam, F. (2004). Transient and steady-state creep characteristics of Cu−2wt%Sn alloy in the solid solution region. Physica B: Comdensed Matter. 344(1-4), 443-450. DOI: 10.1016/ j.physb.2003.10.028.
  • [11] Song, J.Y., Yu, J. & Lee, T.Y. (2004). Effects of reactive diffusion on stress evolution in Cu−Sn films. Scripta Materialia. 51(2), 167-170. DOI: 10.1016/j.scriptamat. 2004.03.032.
  • [12] Debiemme-Chouvy, C., Ammeloot, F. & Sutter, E.M.M. (2001). X-ray photoemission investigation of the corrosion film formed on a polished Cu−13Sn alloy in aerated NaCl solution. Applied Surface Science. 174(1), 55-61. DOI: 10.1016/s0169-4332(01)00023-x.
  • [13] Luo, J.H. & He, F. (2019). Effect of process parameters on exudation thickness in continuous unidirectional solidification tin bronze alloy. Archives of Foundry Engineering. 19(2), 97-100. DOI: 10.24425/afe. 2019.127123.
  • [14] Flemings, M.C. (1974). Solidification Processing. New York: McGrall Hill.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-660ae330-b8d1-4c5e-ac82-1b66cc792805
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.