PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Postbuckling behaviour of graphene-reinforced plate with interfacial effect

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study is aimed to study the postbuckling response of the graphene sheet (GS)-reinforced plate including the effect of van-der-Waals (vdW) bonding between GS and matrix. An equivalent solid fibre (ESF) containing GS and the interfacial region is modelled, and that are randomly dispersed into the matrix with the aid of the Boolean based random sequential adsorption (RSA) technique. The elastic constants of the nanocomposite are calculated by the FEM-based homogenization procedure. It is established that interphase zone, stacking and short GSs pose the negative effect on the elastic properties of nanocomposite and postbuckling strength of the GS-reinforced plate.
Rocznik
Strony
3--36
Opis fizyczny
Bibliogr. 71 poz., rys. kolor.
Twórcy
  • Mechanical Engineering Department Manipal University Jaipur, India
autor
  • Mechanical Engineering Department Malaviya National Institute of Technology Jaipur, India
Bibliografia
  • 1. A.K. Geim, K.S. Novoselov, The rise of graphene, Nature, 6, 183–191, 2007.
  • 2. P.R. Wallace, The band theory of graphite, Physical Review, 71, 622–634, 1947.
  • 3. M.P. Sharma, L.G. Johnson, J.W. McClure, Diamagnetism of graphite, Physics Letters A, 44, 445–446, 1973.
  • 4. E. Fradkin, Critical behaviour of disordered degenerate semiconductors I. Models, symmetries, and formalism, Physical Review B, 33, 3257–3262, 1986.
  • 5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306, 5696, 666–669, 2004.
  • 6. I. Ovid’ko, Mechanical properties of graphene, Reviews on Advanced Materials Science, 34, 1–11, 2013.
  • 7. T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Recent advances in graphene based polymer composites, Progress in Polymer Science, 35, 1350–1375, 2010.
  • 8. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature, 442, 282–286, 2006.
  • 9. H. Kim, C.W. Macosko, Processing-property relationships of polycarbonate/grapheme composites, Polymer, 50, 3797–3809, 2009.
  • 10. M. El Achaby, A. Qaiss, Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes, Materials & Design, 44, 81–89, 2013.
  • 11. S. Bashirvand, A. Montazeri, New aspects on the metal reinforcement by carbon nanofillers: A molecular dynamics study, Materials & Design, 91, 306–313, 2016.
  • 12. A. Fereidoon, S. Aleaghaee, I. Taraghi, Mechanical properties of hybrid graphene/TiO2 (rutile) nanocomposite: A molecular dynamics simulation, Computational Materials Science, 102, 220–227, 2015.
  • 13. A. Montazeri, H. Rafii-Tabar, Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocomposites, Physics Letters A, 375, 4034–4040, 2011.
  • 14. G.I. Giannopoulos, I.G. Kallivokas, Mechanical properties of graphene based nanocomposites incorporating a hybrid interphase, Finite Elements in Analysis and Design, 90, 31–40, 2014.
  • 15. Y. Chandra, E.I. Saavedra Flores, F. Scarpa, S. Adhikari, Buckling of hybrid nanocomposites with embedded graphene and carbon nanotubes, Physica E: Low-Dimensional Systems and Nanostructures, 83, 434–441, 2016.
  • 16. A. Hemmasizadeh, M. Mahzoon, E. Hadi, R. Khandan, A method for developing the equivalent continuum model of a single layer graphene sheet, Thin Solid Films, 516, 7636–7640, 2008.
  • 17. S. Kitipornchai, X.Q. He, K.M. Liew, Continuum model for the vibration of multilayered graphene sheets, Physical Review B – Condensed Matter and Materials Physics, 72, 75443, 2005.
  • 18. M.M. Shokrieh, R. Rafiee, Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach, Materials & Design, 31, 790–795, 2010.
  • 19. Y.J. Liu, X.L. Chen, Evaluations of the effective material properties of carbon nanotube based composites using a nanoscale representative volume element, Mechanics of Materials, 35, 69–81, 2003.
  • 20. U.A. Joshi, S.C. Sharma, S.P. Harsha, Effect of waviness on the mechanical properties of carbon nanotube based composites, Physica E: Low-Dimensional Systems and Nanostructures, 43, 1453–1460, 2011.
  • 21. D. Kumar, A. Srivastava, Elastic properties of CNT- and graphene-reinforced nanocomposites using RVE, Steel and Composite Structures, 21, 1085–1103, 2016.
  • 22. A. Anjomshoa, A.R. Shahidi, B. Hassani, E. Jomehzadeh, Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory, Applied Mathematical Modelling, 38, 5934–5955, 2014.
  • 23. A. Naderi, A.R. Saidi, Nonlocal postbuckling analysis of graphene sheets in a nonlinear polymer medium, International Journal of Engineering Science, 81, 49–65, 2014.
  • 24. A. Parashar, P. Mertiny, Representative volume element to estimate buckling behavior of graphene/polymer nanocomposite, Nanoscale Research Letters, 7, 515, 2012.
  • 25. P. Joshi, S.H. Upadhyay, Analysis of alignment effect on carbon nanotube layer in nanocomposites, Physica E: Low-Dimensional Systems and Nanostructures, 66, 221–227, 2015.
  • 26. S.K. Georgantzinos, G.I. Giannopoulos, N.K. Anifantis, Effective Young’s modulus of carbon nanotube composites: From multi-scale finite element predictions to an analytical rule, Journal of Computational and Theoretical Nanoscience, 7, 1436–1442, 2010.
  • 27. G.I. Giannopoulos, S.K. Georgantzinos, N.K. Anifantis, A semi-continuum finite element approach to evaluate the Young’s modulus of single-walled carbon nanotube reinforced composites, Composites Part B: Engineering, 41, 594–601, 2010.
  • 28. S.K. Georgantzinos, G.I. Giannopoulos, N.K. Anifantis, Investigation of stress strain behavior of single walled carbon nanotube/rubber composites by a multi-scale finite element method, Theoretical and Applied Fracture Mechanics, 52, 158–164, 2009.
  • 29. B. Arash, Q.Wang, V.K. Varadan, Mechanical properties of carbon nanotube/polymer composites, Scientific Reports, 4, 6479, 2014.
  • 30. L.Y. Jiang, Y. Huang, H. Jiang, G. Ravichandran, H. Gao, K.C. Hwang, B. Liu, A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force, Journal of the Mechanics and Physics of Solids, 54, 2436–2452, 2006.
  • 31. J. Zhao, J.W. Jiang, Y. Jia, W. Guo, T. Rabczuk, A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates, Carbon, 57, 108–119, 2013.
  • 32. A. Srivastava, D. Kumar, A continuum model to study interphase effects on elastic properties of CNT/GS-nanocomposite, Materials Research Express, 4, 25036, 2017.
  • 33. A. Hernández-Pérez, F. Avilés, Modeling the influence of interphase on the elastic properties of carbon nanotube composites, Computational Materials Science, 47, 926–933, 2010.
  • 34. M.M. Shokrieh, R. Rafiee, Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing an equivalent long fiber, Mechanics Research Communications, 37, 235–240, 2010.
  • 35. S. Chatterjee, F. Nafezarefi, N.H. Tai, L. Schlagenhauf, F.A. Nüesch, B.T.T. Chu, Size and synergy effects of nanofiller hybrids including grapheme nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites, Carbon, 50, 5380–5386, 2012.
  • 36. L.Y. Chen, H. Konishi, A. Fehrenbacher, C. Ma, J.Q. Xu, H. Choi, H.F. Xu, F.E. Pfefferkorn, X.C. Li, Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites, Scripta Materiala, 67, 29–32, 2012.
  • 37. J. Kim, J. Oh, K.Y. Lee, I. Jung, M. Park, Dispersion of graphene-based nanocarbon fillers in polyamide 66 by dry processing and its effect on mechanical properties, Composites Part B: Engineering, 114, 445–456, 2017.
  • 38. M. Fang, K. Wang, H. Lu, Y. Yang, S. Nutt, Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites, Journal of Materials Chemistry, 19, 7098, 2009.
  • 39. X. Lin, X. Shen, Q. Zheng, N. Yousefi, L. Ye, Y.W. Mai, J.K. Kim, Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets, ACS Nano, 6, 10708–10719, 2012.
  • 40. J. Feder, Random sequential adsorption, Journal of Theoretical Biology, 87, 2, 237–254, 1980.
  • 41. S. Kari, H. Berger, U. Gabbert, Numerical evaluation of effective material properties of randomly distributed short cylindrical fibre composites, Computational Materials Science, 39, 198–204, 2007.
  • 42. Y. Pan, L. Iorga, A.A. Pelegri, Analysis of 3D random chopped fiber reinforced composites using FEM and random sequential adsorption, Computational Materials Science, 43, 450–461, 2008.
  • 43. M. Bailakanavar, Y. Liu, J. Fish, Y. Zheng, Automated modeling of random inclusion composites, Engineering with Computers, 30, 609–625, 2012.
  • 44. H. Liu, D. Zeng, Y. Li, L. Jiang, Development of RVE-embedded solid elements model for predicting effective elastic constants of discontinuous fiber reinforced composites, Mechanics of Materials, 93, 109–123, 2016.
  • 45. M. Song, S. Kitipornchai, J. Yang, Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets, Composite Structures, 159, 579–588, 2017.
  • 46. H. Wu, J. Yang, S. Kitipornchai, Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment, Composite Structures, 162, 244–254, 2017.
  • 47. J. Yang, H. Wu, S. Kitipornchai, Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams, Composite Structures, 161, 111–118, 2017.
  • 48. H.S. Shen, Y. Xiang, F. Lin, Buckling and postbuckling of functionally graded grapheme reinforced composite laminated plates in thermal environments, Composites Part B, 119, 67–78, 2017.
  • 49. A. Srivastava, D. Kumar, Post-buckling behaviour of carbon-nanotube-reinforced nanocomposite plate, S¯adhan¯a, 42, 129–141, 2017.
  • 50. J. Fan, Multiscale Analysis of Deformation and Failure of Materials, Wiley, New York, 2011.
  • 51. A. White, Intermolecular potentials of mixed systems: Testing the Lorentz–Berthelot mixing rules with ab initio calculations, Defence Science and Technology Organisation, DSTO-TN-0302, Melbourne, 2000.
  • 52. D. Boda, D. Henderson, The effects of deviations from Lorentz–Berthelot rules on the properties of a simple mixture, Molecular Physics. An International Journal Interface Between Chemistry Physics, 106, 2367–2370, 2008.
  • 53. A.K. Kaw, Mechanics of Composite Materials, CRC Press Taylor & Francis Group, London, New York, 2006.
  • 54. A. Srivastava, D. Kumar, Postbuckling of nanocomposite plate reinforced with randomly oriented and dispersed CNTs modeled through RSA technique, International Journal for Multiscale Computational Engineering, 14, 585–606, 2016.
  • 55. M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z. Yu, N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano, 3, 3884–3890, 2009.
  • 56. T. Kubiak, Static and Dynamic Buckling of Thin-Walled Plate Structures, Springer International Publishing, Switzerland, 2013.
  • 57. B.W.R. Forde, S.F. Stiemer, Improved arc length orthogonality methods for nonlinear finite element analysis, Computers & Structures, 27, 625–630, 1987.
  • 58. A. Srivastava, D. Kumar, Mechanical characterization and postbuckling behavior of carbon nanotube-carbon fiber reinforced nanocomposite laminate, Proceedings of the Institution of Mechanical Engineers. Part C Journal of Mechanical Engineering Science, 232, 106–123, 2016.
  • 59. V. Mittal, S. Kim, S. Neuhofer, C. Paulik, Polyethylene/graphene nanocomposites: effect of molecular weight on mechanical, thermal, rheological and morphological properties, Colloid and Polymer Science, 294, 691–704, 2016.
  • 60. M. Rashad, F. Pan, A. Tang, M. Asif, J. She, J. Gou, J. Mao, H. Hu, Development of magnesium-graphene nanoplatelets composite, Journal of Composite Materials, 49, 285–293, 2015.
  • 61. D. Lin, C.R. Liu, G.J. Cheng, Single-layer graphene oxide reinforced metal matrix composites by laser sintering: Microstructure and mechanical property enhancement, Acta Materialia, 80, 183–193, 2014.
  • 62. C. Zhao, J. Wang, Fabrication and Tensile properties of graphene/copper composites prepared by electroless plating for structural applications, Physica Status Solidi A, Applications and Materials Science, 211, 2878–2885, 2014.
  • 63. S.J. Niteesh Kumar, R. Keshavamurthy, M.R. Haseebuddin, P.G. Koppad, Mechanical properties of aluminium-graphene composite synthesized by powder metallurgy and hot extrusion, Transactions of the Indian Institute of Metals, 70, 605–613, 2017.
  • 64. S.K. Chien, Y.T. Yang, C.K. Chen, A molecular dynamics study of the mechanical properties of graphene nanoribbon-embedded gold composites, Nanoscale, 3, 4307, 2011.
  • 65. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of Computational Physics, 117, 1–19, 1995.
  • 66. B. WenXing, Z. ChangChun, C. WanZhao, Simulation of Young’s modulus of singlewalled carbon nanotubes by molecular dynamics, Physica B: Condensed Matter, 352, 156–163, 2004.
  • 67. K. Alzebdeh, Evaluation of the in-plane effective elastic moduli of single-layered grapheme sheet, International Journal of Mechanics and Materials Design, 8, 269–278, 2012.
  • 68. X.L. Chen, Y.J. Liu, Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites, Computational Materials Science, 29, 1–11, 2004.
  • 69. P. Joshi, S.H. Upadhyay, Evaluation of elastic properties of multi walled carbon nanotube reinforced composite, Computational Materials Science, 81, 332–338, 2014.
  • 70. P. Sundaresan, G. Singh, G. Venkateswara Rao, Buckling and post-buckling analysis of moderately thick laminated rectangular plates, Computers & Structures, 61, 79–86, 1996.
  • 71. T. Le-manh, J. Lee, Postbuckling of laminated composite plates using NURBS-based isogeometric analysis, Composite Structures, 109, 286–293, 2014.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66043a6f-5fb3-41c7-a574-6db7eaa2a2f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.