PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Use of Rhizosphere Microorganisms in Plant Production – A Review Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Minimizing or neutralizing the effects of environmental stresses on crop plants, protecting against pests and diseases, and at the same time ensuring optimal plant growth and development are currently the most important tasks faced by growers and plant producers around the world. Nowadays, the goal is to limit the use of chemicals as much as possible to protect the environment and improve the quality of food. The interest in the use of beneficial rhizosphere microorganisms is becoming global, as it can represent an environmentally friendly alternative to chemicalization in the era of threats to crop cultivation in the modern world (climate change, drought, salinity, introduction of plant pests).
Rocznik
Strony
292--310
Opis fizyczny
Bibliogr. 184 poz., tab.
Twórcy
  • Department of Horticulture, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434 Szczecin, Poland
  • Department of Horticulture, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434 Szczecin, Poland
Bibliografia
  • 1. Abdelkrim, S., Jebara, S.H., Saadani, O., Abid, G., Taamalli, W., Zemni, H., Jebara, M. 2020. In situ effects of Lathyrus sativus – PGPR to remediate and restore quality and fertility of Pb and Cd polluted soils. Ecotoxicol Environ Saf, 192, 110260. doi:10.1016/j.ecoenv.2020.110260.
  • 2. Abdel Latef A.A., Chaoxing H. 2011b. Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol. Plant., 33, 1217-1225.
  • 3. Adesemoye A.O., Torbert H.A., Kloepper J.W. 2010. Increased plant uptake of nitrogen from 15Ndepleted fertilizer using Plant Growth-Promoting Rhizobacteria. Appl. Soil Ecol., 46(1), 54-58.
  • 4. Ahemad M. 2014. Phosphate solubilizing bacteriaassisted phytoremediation of metalliferous soils: a review. Biotech, 5(2), 111-121.
  • 5. Akhtar R., Javaid A. 2018. Biological management of basal rot of onion by Trichoderma harzianum and Withania somnifera. Planta Daninha, 35, 1-7.
  • 6. Akhter W., Bhuiyan M.K.A., Sultana F., Hossain M.M. 2015. Integrated effect of microbial antagonist, organic amendment and fungicide in controlling seedling mortality (Rhizoctonia solani) and improving yield in pea (Pisum sativum L.). C. R. Biol, 338, 21-28.
  • 7. Ali A.H., Abdelrahman M., Radwan U., El-Zayat S., El-Sayed M.A. 2018. Effect of Thermomyces fungal endophyte isolated from extreme hot desert-adapted plant on heat stress tolerance of cucumber. Appl. Soil Ecol., 124, 155-162.
  • 8. Anjum S.A., Xie X-Y., Wang L-C., Saleem M.F., Man C., Lei W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res., 6(9), 2026-2032.
  • 9. Azarmi F., Mozafari V., Abbaszadeh Dahaji P., Hamidpour M. 2015. Biochemical, physiological and antioxidant enzymatic activity responses of pistachio seedlings treated with plant growth promoting rhizobacteria and Zn to salinity stress. Acta Physiol Plant, 38(21), 1-16.
  • 10. Babu A.G., Kim J-D., Oh B-T. 2013. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J. Hazard. Mater., 250-251, 477-483.
  • 11. Bacilio M., Moreno M., Bashan Y. 2016. Mitigation of negative effects of progressive soil salinity gradients by application of humic acids and inoculation with Pseudomonas stutzeri in a salt-tolerant and a saltsusceptible pepper. Appl. Soil. Ecol., 107, 394-404.
  • 12. Bagheri V., Shamshiri M.H., Shirani H., Roosta H.R. 2012. Nutrient Uptake and Distribution in Mycorrhizal Pistachio Seedlings under Drought Stress. J. Agr. Sci. Tech., 14, 1591-1604.
  • 13. Bashan Y., de-Bashan L.E., Prabhu S.R. 2016. Superior Polymeric Formulations and Emerging Innovative Products of Bacterial Inoculants for Sustainable Agriculture and the Environment. In: Singh, H., Sarma, B., Keswani, C. (eds) Agriculturally Important Microorganisms. Springer, Singapore, 15-46.
  • 14. Bent E. 2006. Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and Fungi (PGPF). In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, New York, 225-258.
  • 15. Berdeni D., Cotton T.E.A., Daniell T.J., Bidartondo M.I., Cameron D.D., Evans K.L. 2018. The Effects of Arbuscular Mycorrhizal Fungal Colonisation on Nutrient Status, Growth, Productivity and Canker Resistance of Apple (Malus pumila). Front Microbiol, 9(1461), 1-14.
  • 16. Berendsen R.L., Pieterse C.M.J., Bakker P.A.H.M. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci, 17(8), 478-486.
  • 17. Berg G., Grube M., Schloter M., Smalla K. 2014. Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol, 5, 1-7.
  • 18. Bhattacharyya P.N., Jha D.K. 2011. Plant growthpromoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol., 28(4), 1327-1350.
  • 19. Bibi N., Jan G., Jan F.G., Hamayun M., Iqbal A., Hussain A., Rehman H., Tawab A., Khushdil F. 2019. Cochliobolus sp. acts as a biochemical modulator to alleviate salinity stress in okra plants. Plant Physiol. Biochem., 139, 459-469.
  • 20. Birhane E., Sterck F., Fetene M., Bongers F., Kuyper T. 2012. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency and growth of frankincense seedlings under pulsed water availability conditions. Oecologia, 169, 895-904.
  • 21. Bojorquez-Quintal J., Velarde A., Ku A., CarilloPech M., Ortega-Camacho D., Echevarría-Machado I., Pottosin I., Martínez-Estévez M. 2014. Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): proline accumulation, ions dynamics, root-shoot partition and compartmentation. Front. Plant Sci, 5, 605. doi: 10.3389/ fpls.2014.00605.
  • 22. Bokszczanin K.L. 2013. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front. Plant Sci, 4, 315. doi: 10.3389/fpls.2013.00315.
  • 23. Bonfante P., Genre A. 2010. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun, 1, 48. doi: 10.1038/ncomms1046.
  • 24. Borde M., Dudhane M., Jite P.K. 2010. AM fungi influences the photosynthetic activity, growth and antioxidant enzymes in Allium sativum L. under salinity condition. Not. Sci. Biol., 2, 64-71.
  • 25. Cabral C., Ravnskov S., Tringovska I., Wollenweber B. 2016. Arbuscular mycorrhizal fungi modify nutrient allocation and composition in wheat (Triticum aestivum L.) subjected to heat-stress. Plant Soil, 408(1-2), 385-399.
  • 26. Calvo-Polanco M., Sánchez-Romera B., Aroca R., Asins M.J., Declerck S., Dodd I.C., Martínez-Andújar C., Albacete A., Ruiz-Lozano J.M. 2016. Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. Environ Exp Bot, 131, 47-57.
  • 27. Chandrasekaran M., Chanratana M., Kim K., Seshadri S., Sa T. 2019. Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress – a metaanalysis. Front. Plant Sci., 10, 457. doi: 10.3389/fpls.2019.00457.
  • 28. Chang P., Gerhardt K.E., Huang X.-D., Yu X.-M., Glick B.R., Gerwing P.D., Greenberg B.M. 2014. Plant Growth-Promoting Bacteria Facilitate the Growth of Barley and Oats in Salt-Impacted Soil: Implications for Phytoremediation of Saline Soils. Int J Phytoremediat, 16(11), 1133-1147.
  • 29. Chauhan H., Bagyaraj D.J., Selvakumar G., Sundaram S.P. 2015. Novel plant growth promoting Rhizobacteria – Prospects and potential. Appl. Soil Ecol., 95, 38-53.
  • 30. Chatterjee P., Kanagendran A., Samaddar S., Pazouki L., Sa T-M., Niinemets Ü. 2019. Influence of Brevibacterium linens RS16 on foliage photosynthetic and volatile emission characteristics upon heat stress in Eucalyptus grandis. Sci Total Environ, 700, 134453. doi:10.1016/j.scitotenv.2019.134453.
  • 31. Chen S., Zhao H., Zou C., Li Y., Chen Y., Wang Z., JiangY., Zhao P., Wang M., Ahammed G.J. 2017. Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedling. Front Microbiol, 8(2516), 1–11.
  • 32. Chen S., Jin W., Liu A., Zhang S., Liu D., Wang F., Lin X., Zhang S., He C. 2013. Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Sci. Hort., 160, 222-229.
  • 33. Cheng Z., Woody O.Z., McConkey B.J., Glick B.R. 2012. Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome. Appl. Soil Ecol., 61, 255-263.
  • 34. Çekiç F.O., Unyayar S., Ortas I. 2012. Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. Turk. J. Bot., 36, 63-72.
  • 35. Chithrashree, Udayashankar A.C., Chandra Nayaka S., Reddy M.S., Srinivas C. 2011. Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biol Control, 59(2), 114-122.
  • 36. Chirino-Valle I., Kandula D., Littlejohn C., Hill R., Walker M., Shields M., Cummings N., Hettiarachchi D., Wratten S. 2016. Potential of the beneficial fungus Trichoderma to enhance ecosystem-service provision in the biofuel grass Miscanthus × giganteus in agriculture. Sci Rep, 6, 25109. doi: 10.1038/srep25109.
  • 37. Choudhary D.K, Kasotia A, Jain S., Vaishnav A, Kumari S., Sharma K.P, Varma A. 2015. Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J Plant Growth Regul, 35, 276-300.
  • 38. Cohen A.C., Bottini R., Pontin M., Berli F.J., Moreno D., Boccanlandro H., Travaglia C.N., Piccoli P.N. 2014. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol. Plant., 153(1), 79-90.
  • 39. Dal Cortivo, C., Barion, G., Visioli, G., Mattarozzi, M., Mosca, G., Vamerali, T. 2017. Increased root growth and nitrogen accumulation in common wheat following PGPR inoculation: Assessment of plant-microbe interactions by ESEM. Agric Ecosyst Environ, 247, 396-408.
  • 40. Damodharan K., Palaniyandi S.A., Le B., Suh J.W., Yang S.H. 2018. Streptomyces sp. strain SK68, isolated from peanut rhizosphere, promotes growth and alleviates salt stress in tomato (Solanum lycopersicum cv. Micro-Tom). J. Microbiol., 56, 753-759.
  • 41. Das A., Kamas S., Akhtar N.S. 2012. The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant Coleus forskohlii. Plant Signal Behav, 7, 1-10.
  • 42. Delgado-Sánchez P., Ortega-Amaro M.A., JiménezBremont J.F., Flores J. 2011. Are fungi important for breaking seed dormancy in desert species? Experimental evidence in Opuntia streptacantha (Cactaceae). Plant Biol, 13, 154-159.
  • 43. Di Salvo L.P., Cellucci G.C., Carlino M.E., de Salamone I.E.G. 2018. Plant growth-promoting rhizobacteria inoculation and nitrogen fertilization increase maize (Zea mays L.) grain yield and modified rhizosphere microbial communities. Appl. Soil Ecol., 126, 113-120.
  • 44. Elhindi K.M., El-Din S.A., Elgorban A. M. 2017. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J. Biol. Sci., 24, 170-179.
  • 45. Elsharkawy M.M., Shivanna M.B, Meera M.S, Hyakumachi M. 2015. Mechanism of induced systemic resistance against anthracnose disease in cucumber by plant growth-promoting fungi. Acta Agric Scand Sect B Soil Plant Sci, 65(4), 287-299
  • 46. Elsharkawy M.M, Shimizu M., Takahashi H., Hyakumachi M. 2012. Induction of systemic resistance against Cucumber mosaic virus by Penicillium simplicissimum GP17–2 in Arabidopsis and Tobacco. Plant Pathol, 61, 964-976.
  • 47. Enebe M.C., Babalola O.O. 2018. The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl Microbiol Biotechnol, 102(18), 7821-7835.
  • 48. Esitken A., Yildiz H. E., Ercisli S., Figen Donmez M., Turan M., Gunes A. 2010. Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic, 124(1), 62-66.
  • 49. Etesami H., Maheshwari D.K. 2018. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicol Environ Saf, 156, 225-246.
  • 50. Etesami H., Emami S.E., Alikhani H.A. 2017. Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects – a review. J Soil Sci Plant Nutr, 17, 897-911.
  • 51. Etesami H., Adl S.M. 2020. Plant Growth-Promoting Rhizobacteria (PGPR) and Their Action Mechanisms in Availability of Nutrients to Plants. In: Kumar, M., Kumar, V., Prasad, R. (eds.). PhytoMicrobiome in Stress Regulation. Environmental and Microbial Biotechnology.
  • 52. Fan X., Zhang S., Mo X., Li Y., Fu Y., Liu Z. 2017. Effects of Plant Growth-Promoting Rhizobacteria and N Source on Plant Growth and N and P Uptake by Tomato Grown on Calcareous Soils. Pedosphere, 27(6), 1027-1036.
  • 53. Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. 2009. Plant Drought Stress: Effects, Mechanisms and Management. J Sustain Agr, 153-188.
  • 54. Fontenelle A.D.B., Guzzo S.D., Lucon C.M.M., Harakaya R. 2011. Growth promotion and induction of resistance in tomato plant against Xanthomonas euvesicatoria and Alternaria solani by Trichoderma spp. Crop Prot, 30, 1492-1500.
  • 55. Gao X., Guo H., Zhang Q., Guo H., Zhang L., Zhang C., Gou Z., Liu Y., Wei J., Chen A., Chu Z., Zeng F. 2020. Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Sci Rep, 10, 2084. doi: 10.1038/s41598-020-59180-3
  • 56. Ghazalibiglar H., Hampton J.G., van Zijll de Jong E., Holyoake A. 2016. Is induced systemic resistance the mechanism for control of black rot in Brassica oleracea by a Paenibacillus sp.? Biol Control 92, 195-201.
  • 57. Gholami A., Shahsavani S., Nezarat S. 2009. The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. International Journal of Agricultural and Biosystems Engineering 3(1), 9-14.
  • 58. Gholamhoseini M., Ghalavand A., Dolatabadian A., Jamshidi E., Khodaei-Joghan A. 2013. Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric. Water Manag., 117, 106-114.
  • 59. Goswami D., Thakker J.N. Dhandhukia P.C., Moral M.T. 2016. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food Agric, 2(1), 1127500.
  • 60. Goswami D., Thakker J.N., Dhandhukia P.C. 2015. Simultaneous detection and quantification of indole3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by rhizobacteria from l-tryptophan (Trp) using HPTLC. J. Microbiol. Methods, 110, 7-14.
  • 61. Gouda S., Kerry R.G., Das G., Paramithiotis S., Shin H.S., Patra J.K. 2018. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res, 206, 131-140.
  • 62. Gujar P.D., Bhavsar K.P., Khire J.M. 2013. Effect of phytase from Aspergillus niger on plant growth and mineral assimilation in wheat (Triticum aestivum Linn.) and its potential for use as a soil amendment. J Sci Food Agric, 93, 2242-2247.
  • 63. Guler N.S, Pehlivan N., Karaoglu S.A. 2016. Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings. Acta Physiol Plant, 38, 132. https://doi.org/10.1007/s11738-016-2153-3.
  • 64. Hassan T.U., Bano A., Naz I. 2016. Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. Int J Phytoremediat, 19(6), 522-529.
  • 65. Hasanuzzaman M., Nahar K., Alam M., Roychowdhury R., Fujita M. 2013. Physiological, Biochemical and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int. J. Mol. Sci. 14(5), 9643-9684.
  • 66. Hajiboland R., Aliasgharzadeh N., Laiegh S.F., Poschenrieder C. 2010. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331, 313-327.
  • 67. Hamayun M., Khan S.A., Khan A.L., Tang D-S., Hussain J., Ahmad B., Anwar Y., Lee I-J. 2010. Growth promotion of cucumber by pure cultures of gibberellin – producing Phoma sp. GAH7. World J Microbiol Biotechnol 26, 889-894.
  • 68. Hayat R., Ahmed I., Sheirdil R.A. 2012. An Overview of Plant Growth Promoting Rhizobacteria (PGPR) for Sustainable Agriculture. In: Ashraf M., Öztürk M., Ahmad M., Aksoy A. (eds) Crop Production for Agricultural Improvement. Springer, Dordrecht.
  • 69. He F., Sheng M., Tang M. 2017. Effects of Rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoacacia L. under drought stress. Front. Plant Sci., 8, 183. doi: 10.3389/fpls.2017.00183.
  • 70. Hossain M.M., Sultana F., Islam S. 2017. Plant Growth-Promoting Fungi (PGPF): Phytostimulation and Induced Systemic Resistance. In: Singh D., Singh H., Prabha R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore, 135-191.
  • 71. Hossain M.M., Sultana F. 2015. Genetic variation for induced and basal resistance against leaf pathogen Pseudomonas syringae pv. tomato DC3000 among Arabidopsis thaliana accessions. Springer Plus 4, 296.
  • 72. Hossain M.M., Sultana F., Miyazawa M., Hyakumachi M. 2014. The plant growth promoting fungi Penicillium spp. GP15-1 enhances growth and confers protection against damping-off and anthracnose in the cucumber. J Oleo Sci, 63(4), 391-400.
  • 73. Islam S., Akanda A.M., Prova A., Sultana F., Hossain M.M. 2014b. Growth promotion effect of Fusarium spp. PPF1 from Bermuda grass (Cynodon dactylon) rhizosphere on Indian spinach (Basella alba) seedlings are linked to root colonization. Arch Phytopathol Plant Protect, 47, 2319-2331.
  • 74. Janouškova M., Pavlíková D. 2010. Cadmium immobilization in the rhizosphere of arbuscular mycorrhizal plants by the fungal extraradical mycelium. Plant Soil, 332, 511-520.
  • 75. Javaid A., Afzal R., Shoaib A. 2019. Biological management of southern blight of chili by Penicillium oxalicum and leaves of Eucalyptus citriodora. Int. J. Agr. Biol., 23, 93-102.
  • 76. Jewell M.C., Campbell B.C, Godwin I.D. 2010. Transgenic plants for abiotic stress resistance. In: Kole C., Michler C.H., Abbott A.G., Hall T.C. (eds) Transgenic crop plants. Springer, Berlin, Heidelberg, 67-132.
  • 77. Jiang S., Zhang D., Wang L., Pan J., Liu Y., Kong X., Li D. 2013. A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis. Plant Physiol. Biochem., 71, 112-120.
  • 78. Jing Y.X., Yan J.L., He H.D., Yang D.J., Xiao L., Zhong T., Yuan M., Cai X.D., Li S.B. 2013. Characterization of Bacteria in the Rhizosphere Soils of Polygonum pubescens and Their Potential in Promoting Growth and Cd, Pb, Zn Uptake by Brassica napus. Int J Phytoremediat., 16(4), 321-333.
  • 79. Julkowska M.M., Testerink C. 2015. Tuning plant signaling and growth to survive salt. Trends Plant Sci, 20, 586-594.
  • 80. Kang S-M., Asaf S., Khan A.L., Lubna, Khan A., Mun B-G., Khan M.A., Gul H., Lee I-J. 2020. Complete Genome Sequence of Pseudomonas psychrotolerans CS51, a Plant Growth-Promoting Bacterium, Under Heavy Metal Stress Conditions. Microorganisms, 8(3), 382. doi:10.3390/microorganisms8030382.
  • 81. Kanwal S., Bano A., Malik R.N. 2015. Effects of arbuscular mycorrhizal fungi on metals uptake, physiological and biochemical response of Medicago sativa L. with increasing Zn and Cd concentrations in soil. Am. J. Plant Sci., 6, 2906-2923.
  • 82. Karthik C., Elangovan N., Kumar T.S., Govindharaju S., Barathi S., Oves M., Arulselvi P.I. 2017. Characterization of multifarious plant growth promoting traits of rhizobacterial strain AR6 under Chromium (VI) stress. Microbiol. Res, 204, 65-71.
  • 83. Karlidag H., Yildirim E., Turan M., Pehluvan M., Donmez F. 2013. Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria x ananassa). HortScience, 48(5), 563–567
  • 84. Karlidag H., Esitken A., Turan M., Sahin F. 2007. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci Hortic, 114(1), 16-20.
  • 85. Kasim W.A., Gaafar R.M., Abou-Ali R.M., Omar M.N., Hewait H.M. 2016. Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann. Agric. Sci., 61, 217-227.
  • 86. Kaur G., Reddy M.S. 2016. Improvement of crop yield by phosphate-solubilizing Aspergillus species in organic farming. Arch. Agron. Soil Sci., 63(1), 24-34.
  • 87. Kaur G., Asthir B. 2016. Molecular responses to drought stress in plants. Biol Plantarum, 61(2), 201-209.
  • 88. Khade S.W., Rodrigues B.F. 2009. Applications of arbuscular mycorrhizal fungi in agroecosystems. Review. Trop Subtropical Agroecosyst, 10, 337–354.
  • 89. Khan N., Zandi P., Ali S., Mehmood A., Adnan Shahid M., Yang J. 2018. Impact of Salicylic Acid and PGPR on the Drought Tolerance and Phytoremediation Potential of Helianthus annus. Front. Microbiol., 9, 2507. doi: 10.3389/fmicb.2018.02507.
  • 90. Khan N., Bano A. 2016. Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater. Int J Phytoremediat, 18(12), 1258-1269.
  • 91. Khan A.L., Hamayun M., Ahmad N. Waqas M., Kang S-M., Kim Y-H., Lee I-J. 2011a. Exophiala sp. LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses. Physiol Plant, 143, 329-343.
  • 92. Kotak S., Larkindale J., Lee U., von Koskull-Döring P., Vierling E., Scharf K-D. 2007. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol., 10(3), 310-316.
  • 93. Krishnamoorthy R., Kim K., Subramanian P., Senthilkumar M., Amanda R., Sa T. 2016. Arbuscular mycorrhizal fungi and associated bacteria isolated from salt-affected soil enhances the tolerance of maize to salinity in coastal reclamation soil. Agric Ecosyst Environ, 231, 233-239.
  • 94. Kuan K.B., Othman R., Abdul R.K, Shamsuddin Z.H. 2016. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions. PLoS ONE 11(3), e0152478. doi:10.1371/journal.pone.0152478
  • 95. Kumar A., Verma J.P. 2018. Does plant Microbe interaction confer stress tolerance in plants: A review? Microbiol. Res., 207, 41-52.
  • 96. Kushwaha P., Kashyap P.L., Kuppusamy P. 2020. Microbes for Cold Stress Resistance in Plants: Mechanism, Opportunities, and Challenges. Rhizosphere Biology, 269-292.
  • 97. Lal S., Tabacchioni S., Chiarini L. 2016. New Insights in Plant-Associated Paenibacillus Species: Biocontrol and Plant Growth-Promoting Activity. In: Islam M., Rahman M., Pandey P., Jha C., Aeron A. (eds) Bacilli and Agrobiotechnology. Springer, Cham, 237-279.
  • 98. Lata R., Chowdhury S., Gond S.K., White Jr J.F. 2018. Induction of abiotic stress tolerance in plants by endophytic microbes. Lett. Appl. Microbiol., 66 (4), 268-276.
  • 99. Lata R., Gond S.K. 2019. Plant growth-promoting microbes for abiotic stress tolerance in plants. Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology, 89-105.
  • 100. Lata C., Prasad M. 2011. The role of DREBs in the regulation of abiotic stress responses in plants. J. Exp. Bot., 62, 4731-4748.
  • 101. Latef A.A.H.A., Chaoxing H. 2011. Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol Plant, 33, 1217-1225.
  • 102. Lakshmanan V., Selvaraj G., Bais H.P. 2014. Functional soil microbiome: below ground solutions to an aboveground problem. Plant Physiol, 66, 689-700.
  • 103. Lavakush Y.J.,Verma J.P., Jaiswal D.K., Kumar A. 2014. Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecol. Eng., 62, 123-128.
  • 104. Lee B.D., Dutta S., Ryu H., Yoo S-J., Suh D-S., Park K. 2015. Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34. J. Ginseng Res., 39(3), 213-220.
  • 105. Leifheit E.F., Verbruggen E., Rillig M.C. 2015. Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation. Soil Biol Biochem, 8, 323–328.
  • 106. Liu Z.L., Li Y-J., Hou H-Y., Zhu X-C., Rai V., He X-Y., Tian, C-J. 2013. Differences in the arbuscular mycorrhizal fungi-improved rice resistance to low temperature at two N levels: Aspects of N and C metabolism on the plant side. Plant Physiol. Biochem., 71, 87-95.
  • 107. Liu D., Lian B., Dong H. 2012. Isolation of Paenibacillus sp. and Assessment of Its Potential for Enhancing Mineral Weathering. Geomicrobiol. J., 29, 413-421.
  • 108. Ludwig-Müller J. 2010. Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi. In: Arbuscular mycorrhizas: Physiology and function (eds). Koltai H., Kapulnik Y. Dordrecht: Springer, 169-190.
  • 109. Ma X.K., Ding N., Peterson E.C., Daugulis A.J. 2016a. Heavy metals species affect fungal-bacterial synergism during the bioremediation of fluoranthene. Appl.Microbiol. Biotechnol., 100, 7741-7750.
  • 110. Ma Y., Rajkumar, M., Zhang, C., Freitas, H., 2016b. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J. Environ. Manage, 174, 14-25.
  • 111. Ma Y., Rajkumar M., Rocha I., Oliveira R.S., Freitas H. 2015. Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multimetal polluted soils. Front Plant Sci, 5, 757. doi: 10.3389/fpls.2014.00757.
  • 112. Mani D., Kumar C., Patel N.K. 2016. Integrated micro-biochemical approach for phytoremediation of cadmium and lead contaminated soils using Gladiolus grandiflorus L. cut flower. Ecotoxicol. Environ. Saf., 124, 435-446.
  • 113. Mathur S., Sharma M.P., Jajoo A. 2018. Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. J. Photochem. Photobiol., 180, 149-154.
  • 114. Meena H., Ahmed M.A., Prakash P. 2015. Amelioration of heat stress in wheat, Triticum aestivum by PGPR (Pseudomonas aeruginosa strain 2CpS1). Biosci. Biotech. Res. Comm., 8(2), 171-174.
  • 115. Mena-Violante H.G., Ocampo-Jimenez O., Dendooven, L., Martinez-Soto G., Gonzalez-Castafeda J., Davies F.T., Olalde-Portugal V. 2006. Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho Capsicum annuum L. cv San Luis plants exposed to drought. Mycorrhiza, 16, 261-267.
  • 116. Mendes R., Garbeva P., Raaijmakers J.M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic and human pathogenic microorganisms. FEMS Microbiol Rev, 37, 634-663.
  • 117. Mikiciuk G., Sas-Paszt L., Mikiciuk M., Derkowska E., Trzcinski P., Ptak P., Chylewska U., Statkiewicz M., Lisek A. 2019a. Physiological Response of Three Grapevine Cultivars Grown in North-Western Poland to Mycorrhizal Fungi. S Afr J Enol Vitic, 40(1), 1-14.
  • 118. Mikiciuk G., Sas-Paszt L., Mikiciuk M., Derkowska E., Trzciński P., Głuszek, S., Lisek A., Wera-Bryl S., Rudnicka, J. 2019b. Mycorrhizal frequency, physiological parameters, and yield of strawberry plants inoculated with endomycorrhizal fungi and rhizosphere bacteria. Mycorrhiza, 29, 489-501.
  • 119. Mimmo T., Pii Y., Valentinuzzi F., Astolfi S., Lehto N., Robinson B., Brunetto G., Terzano R., Cesco S. 2018. Nutrient availability in the rhizosphere: a review. Acta Hortic., 1217, 13-28.
  • 120. Miransari M. 2017. Arbuscular mycorrhizal fungi and heavy metal tolerance in plants. In: Arbuscular mycorrhizas and stress tolerance of plants. (eds) Wu Q.S. Singapore: Springer Nature, 174-161.
  • 121. Mishra J., Singh R., Arora N.K. 2017. Plant GrowthPromoting Microbes: Diverse Roles in Agriculture and Environmental Sustainability. In: Kumar V., Kumar M., Sharma S., Prasad R. (eds) Probiotics and Plant Health. Springer, Singapore, 71-111.
  • 122. Moradtalab N., Roghieh H., Nasser A., Tobias E.H., Günter N. 2019. Silicon and the association with an arbuscular-mycorrhizal fungus (Rhizophagus clarus) mitigate the adverse effects of drought stress on strawberry. Agronomy, 9, 41. doi: 10.3389/fpls.2019.01068.
  • 123. Mushtaq S., Nasim G., Khokhar I., Mukhtar I. 2012. Effects of Penicillium extracts on germination vigour in subsequent seedling growth of tomato (Solanum lycopersicum L.) Arch Phytopathol Plant Protect, 45, 932-937.
  • 124. Nadeem S.M., Ahmad M., Zahir Z.A., Javaid A., Ashraf M. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv., 32(2), 429-448.
  • 125. Naseem H., Bano A. 2014. Role of plant growthpromoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J. Plant Interaction, 9, 689-701.
  • 126. Naveed M., Hussain M.B., Zahir Z.A., Mitter B., Sessitsch A. 2014. Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul. 73(2), 121-131.
  • 127. Naznin H.A., Kiyohara D., Kimura M., Miyazawa M., Shimizu M., Hyakumachi M. 2014. Systemic resistance induced by volatile organic compounds emitted by plant growth promoting fungi in Arabidopsis thaliana. PLoS One, 9(1), e86882. doi: 10.1371/journal.pone.0086882.
  • 128. Nguyen T.D., Cavagnaro T.R. Watts-Williams S.J. 2019. The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: a physiological and molecular assessment. Sci Rep, 9, 14880. https://doi.org/10.1038/s41598-019-51369-5.
  • 129. Oteino N., Lally R.D., Kiwanuka S., Lloyd A. Ryan D., Germaine K.J., Dowling D.N. 2015. Plant Growth Promotion Induced by Phosphate Solubilizing Endophytic Pseudomonas Isolates. Front. Microbiol., 6, 745. doi: 10.3389/ fmicb.2015.00745.
  • 130. Patel S., Sayyed R.Z., Saraf M. 2016. Bacterial Determinants and Plant Defense Induction: Their Role as Biocontrol Agents in Sustainable Agriculture. In: Hakeem K., Akhtar M. (eds) Plant, Soil and Microbes. Springer, Cham, 187-204.
  • 131. Pedranzani H., Tavecchio N., Gutiérrez M., Garbero M., Porcel R., Ruiz-Lozano J.M. 2015. Differential effects of cold stress on the antioxidant response of mycorrhizal and non-mycorrhizal Jatropha curcas (L.) plants. J Agric Sci, 7, 35. doi:10.5539/jas.v7n8p35.
  • 132. Pérez-Jaramillo J.E., Mendes R., Raaijmakers J.M. 2015. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol, 90, 635-644.
  • 133. Philippot L., Raaijmakers J.M., Lemanceau P., van der Putten W.H. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol, 11, 789-799.
  • 134. Pieterse C.M.J., Zamioudis C., Berendsen R.L., Weller D.M., Van Wees S.C.M., Bakker P.A.H.M. 2014. Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol, 52, 347-375.
  • 135. Porcel R., Redondo-Gómez S., Mateos-Naranjo E., Aroca R., Garcia R., Ruiz-Lozano J.M. 2015. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J Plant Physiol, 185, 75-83.
  • 136. Porcel R., Zamarreño Á., García-Mina J., Aroca, R. 2014. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biology, 14(1), 36. https://doi.org/10.1186/1471-2229-14-36.
  • 137. Qin Y., Shang Q., Zhang Y., Li P., Chai Y. 2017. Bacillus amyloliquefaciens L-S60 Reforms the Rhizosphere Bacterial Community and Improves Growth Conditions in Cucumber Plug Seedling. Front Microbiol. 8, 2620. doi: 10.3389/fmicb.2017.02620.
  • 138. Qu A-L., Ding Y-F., Jiang Q., Zhu C. 2013. Molecular mechanisms of the plant heat stress response. Biochem. Biophys. Res. Commun., 432(2), 203-207.
  • 139. Rana A., Saharan B., Nain L., Prasanna R., Shivay Y.S. 2012. Enhancing micronutrientuptake and yield of wheat through bacterial PGPR consortia. Soil Sci. Plant Nutr., 58, 573-582.
  • 140. Rathore P. 2015. A Review on Approaches to Develop Plant Growth Promoting Rhizobacteria Int. J. Recent. Sci. Res, 5(2), 403-407.
  • 141. Rollon R.J.C., Galleros J.E.V., Galos G.R., Villasica L.J.D., Garcia C.M. 2017. Growth and nutrient uptake of Paraserianthes falcataria (L.) as affected by carbonized rice hull and arbuscular mycorrhizal fungi grown in an artificially copper contaminated soil. AAB Bioflux, 9(2), 57-67.
  • 142. Ruiz-Lozano J.M., Aroca R., Zamarreño Á.M., Molina S., Andreo-Jiménez B., Porcel R., García‐Mina J.M., Ruyter‐Spira C., López‐Ráez J.A. 2015. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ., 39(2), 441-452.
  • 143. Sánchez-López A.M., Bahaji A., De Diego N., Baslam M., Li J., Muñoz F.J., Almagro G., García-Gómez P., Ameztoy K., Ricarte-Bermejo A., Novák O., Humplík J.F., Spíchal L., Doležal K., Ciordia S., Mena M.C., Navajas R., Baroja-Fernández E., Pozueta-Romero J. 2016. Arabidopsis responds to Alternaria alternata volatiles by triggering plastid phosphoglucose isomerase-independent mechanisms. Plant Physiol, 172, 989-2001.
  • 144. Sara O., Ennajeh M., Zrig A., Gianinazzi, S., Khemira H. 2018. Estimating the contribution of arbuscular mycorrhizal fungi to drought tolerance of potted olive trees (Olea europaea). Acta Physiol. Plant., 40, 1-81.
  • 145. Sarma R.K., Saikia R. 2013. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil, 377(1-2), 111-126.
  • 146. Sas-Paszt L., Sumorok B., Malusa E., Głuszek S., Derkowska E. 2011. The influence of bioproducts on root growth and mycorrhizal occurrence in the rhizosphere of strawberry plants ‘Elsanta’. J Fruit Ornam Plant Res, 19(1), 13–33.
  • 147. Seema K., Mehta K., Singh N. 2018. Studies on the effect of plant growth promoting rhizobacteria (PGPR) on growth, physiological parameters, yield and fruit of strawberry cv. Chandler. J Pharmacogn Phytochem, 7(2), 383–387.
  • 148. Selvakumar G., Joshi P., Suyal P., Mishra P.K., Joshi G.K., Bisht J.K., Bhatt J.C., Gupta H.S. 2011. Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol, 27(5), 1129-1135.
  • 149. Seneviratne M., Gunaratne S., Bandara T., Weerasundara L., Rajakaruna N., Seneviratne G., Vithanage M. 2016. Plant growth promotion by Bradyrhizobium japonicum under heavy metal stress. S. Afr. J. Bot, 105, 19-24.
  • 150. Sharma P., Kumawat K.C., Kaur S. 2016. Plant Growth Promoting Rhizobacteria in Nutrient Enrichment: Current Perspectives. In: Singh U., Praharaj C., Singh S., Singh N. (eds) Biofortification of Food Crops. Springer, New Delhi, 263-289.
  • 151. Sharma P., Kharkwal A.C., Abdin M.Z., Varma A. 2016. Piriformospora indica – mediated salinity tolerance in Aloe vera plantlets. Symbiosis, 72(2), 103-115.
  • 152. Shen H., Christie P., Li X. 2006. Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environ. Geochem. Health, 28, 111. doi: 10.1007/s10653-005-9020-2.
  • 153. Shukla P.S., Agarwal P.K. Jha B. 2012. Improved Salinity Tolerance of Arachis hypogaea (L.) by the Interaction of Halotolerant Plant-Growth-Promoting Rhizobacteria. J Plant Growth Regul, 31, 195-206.
  • 154. Shrivastava P., Kumar R. 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation Saudi J. Biol. Sci., 123-131.
  • 155. Singh S.K., Singh P.P., Gupta A., Singh A.K., Keshri J. 2019. Tolerance of Heavy Metal Toxicity Using PGPR Strains of Pseudomonas Species. PGPR Amelioration in Sustainable Agriculture, 239-252.
  • 156. Smith S.E., Read D.J. 2008. Mycorrhizal Symbiosis. 3rd Edition, Academic Press, London.
  • 157. Son J-S., Sumayo M., Hwang Y-J., Kim B-S., Ghim S-Y. 2014. Screening of plant growth-promoting rhizobacteria as elicitor of systemic resistance against gray leaf spot disease in pepper. Appl. Soil Ecol., 73, 1-8.
  • 158. Spence C., Bais H. 2015. The role of plant growth regulators as chemical signals in plant–microbe interactions: a double edged sword. Curr. Opin. Plant Biol., 27, 52-58.
  • 159. Sridhar B.S. 2012. Review: Nitrogen Fixing Microorganisms. Int. J. Microbiol, 3(1), 46-52.
  • 160. Suarez C., Cardinale M., Ratering S., Steffens D., Jung S., Montoya A.M.Z., Geissler-Plaum R., Schnell S. 2015. Plant growth-promoting effects of Hartmannibacter diazotrophicus on summer barley (Hordeum vulgare L.) under salt stress. Appl. Soil Ecol., 95, 23-30.
  • 161. Talaat N.B., Shawky B.T. 2014. Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ. Exp. Bot., 98, 20-31.
  • 162. Ting A.S.Y., Mah S.W., Tee C.S. 2010. Identification of volatile metabolites from fungal endophytes with biocontrol potential towards Fusarium oxysporum f. sp. cubense Race 4. Am J Agric Biol Sci, 5(2), 177-182.
  • 163. Tiwari S., Lata C., Chauhan P.S., Nautiyal C.S. 2015. Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol. Biochem., 99, 108-117.
  • 164. Turan M., Gulluce M., Cakmak R., Sahin F. 2013. Effect of plant growth promoting Rhizobacteria strain on freezing injury and antioxidant enzyme activity of wheat and barley. J Plant Nutr, 36, 731-748.
  • 165. Upadhyay S.K, Singh J.S, Saxena A.K, Singh D.P. 2011. Impact of PGPB inoculation on growth and antioxidants status of wheat plant under saline condition. Plant Biol, 14, 605-611.
  • 166. Vázquez-de-Aldana B.R., Zabalgogeazcoa I., García-Ciudad A., García-Criado B. 2013. An Epichloë endophyte affects the competitive ability of Festuca rubra against other grassland species. Plant Soil, 362, 201-213.
  • 167. Vardharajula S., Ali S.Z., Grover M., Reddy G., Bandi V. 2011. Drought-tolerant plant growth promoting Bacillus spp.: effecton growth, osmolytes, and antioxidant status of maize under drought stress. J. Plant Interact., 6(1), 1-14.
  • 168. Vu T.T., Hauschild R., Sikora R.A. 2006. Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology, 8, 847-852.
  • 169. Waghunde R.R., Shelake R.M., Shinde M.S., Hayashi H. 2017. Endophyte microbes: a weapon for plant health management. In: Microorganisms for green revolution. Springer, Singapore, 303-325.
  • 170. Wahid A., Gelani S., Ashraf M., Foolad M. 2007. Heat tolerance in plants: An overview. Environ Exp Bot, 61(3), 199-223.
  • 171. Wang Y., Jing H., Gao Y. 2012. Arbuscular mycorrhizal colonization alters subcellular distribution and chemical forms of cadmium in Medicago sativa L. and resists cadmium toxicity. PLoS One 7, 3161-3164. doi: 10.1371/journal.pone.0048669
  • 172. Wang C-J., Yang W., Wang C., Gu C., Niu D-D., Liu H-X., Wang Y-P., Guo J-H. 2012. Induction of Drought Tolerance in Cucumber Plants by a Consortium of Three Plant Growth Promoting Rhizobacterium Strains. PLoS ONE, 7(12), e52565. doi:10.1371/journal.pone.0052565.
  • 173. Yadav S.K., Singh S., Singh H.B., Sarma B.K. 2017. Compatible Rhizosphere-Competent microbial consortium adds value to the nutritional quality in Edible parts of Chickpea. J. Agr. Food Chem., 65, 6122-6130.
  • 174. Yamagiwa Y., Toyoda K., Inagaki Y., Ichinose Y., Hyakumachi M., Shiraishi T. 2011. Talaromyces wortmannii FS2 emits β-caryophyllene, which promotes plant growth and induces resistance. J Gen Plant Pathol, 77, 336-341.
  • 175. Yeasmin R., Bonser S.P., Motoki S., Nishihara E. 2019. Arbuscular Mycorrhiza Influences Growth and Nutrient Uptake of Asparagus (Asparagus officinalis L.) under Heat Stress, HortScience horts, 54(5), 846-850.
  • 176. Yooyongwech S., Samphumphuang T., Tisarum R., Theerawitaya C., Chaum S. 2016. Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Sci Hort. 198, 107-117.
  • 177. Zandalinas S.I., Mittler R., Balfagón D., Arbona V., Gómez-Cadenas A. 2018. Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162(1), 2-12.
  • 178. Zavala-González E.A., Escudero N., Lopez-Moya F., Aranda-Martinez A., Exposito A., Ricaño‐Rodríguez J., Naranjo-Ortiz M.A., Ramírez‐Lepe M., Lopez‐Llorca L.V. 2015. Some isolates of the nematophagous fungus Pochonia chlamydosporia promote root growth and reduce flowering time in tomato. Ann Appl Biol, 166, 472-483.
  • 179. Zhang S., Gan Y., Xu B. 2016. Application of Plant-Growth-Promoting Fungi Trichoderma longibrachiatum T6 Enhances Tolerance of Wheat to Salt Stress Through Improvement of Antioxidative Defense System and Gene Expression. Front Plant Sci, 7, 1405. doi: 10.3389/fpls.2016.01405.
  • 180. Zhang N., Wang D.D., Liu Y.P., Li S.Q., Shen Q., Zhang R.F. 2014. Effects of differentplant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere – associated bacterial strains. Plant Soil, 374, 689-700.
  • 181. Zhao R., Guo W., Bi N., Guo J., Wang L., Zhao J., Zhang J. 2015. Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Appl. Soil Ecol., 88, 41-49.
  • 182. Zhu X.C., Song F.B., Xu H.W. 2010b. Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics of maize under low temperature stress. Acta Ecol. Sin., 21, 470-475.
  • 183. Zhuang K., Kong F., Zhang S., Meng C., Yang M., Liu Z., Wang Y., Ma N., Meng Q. 2019. Whirly enhances tolerance to chilling stress in tomato via protection of photosystem II and regulation of starch degradation. New Phytol, 221, 1998-2012.
  • 184. Zubair M., Hanif A., Farzand A., Sheikh T.M.M., Khan A.R., Suleman M., Ayaz M., Gao X. 2019. Genetic Screening and Expression Analysis of Psychrophilic Bacillus spp. Reveal Their Potential to Alleviate Cold Stress and Modulate Phytohormones in Wheat. Microorganisms, 7, 337. doi: 10.3390/microorganisms7090337.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66041f97-9601-405b-9d00-2e6866de453f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.