PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling the Impact of Moisture on the Thermal Conductivity of Cotton Jersey

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modelowanie wpływu wilgoci na przewodnictwo cieplne dzianiny bawełnianej
Języki publikacji
EN
Abstrakty
EN
In the design of innovative, protective clothing, thermal comfort is of great importance. One of the key factors affecting thermal comfort is the thermal conductivity of clothing. This study aims to show through theoretical estimations that the effective thermal conductivity of moist clothing could expedite the development process. In this study, we present two theoretical models: a linear model and upgraded model. The upgraded model considers the thermal conductivity of air within the clothing and its volume porosity. For verification of the models presented, the impact of moisture on the thermal conductivity of cotton knit fabric was examined experimentally using the contact hot plate method. Correlation analysis shows that the upgraded model has an important advantage as it can predict the stabilisation of effective thermal conductivity.
PL
W projektowaniu nowatorskiej odzieży ochronnej duże znaczenie ma komfort termiczny. Jednym z kluczowych czynników wpływających na komfort cieplny jest przewodnictwo cieplne odzieży. W pracy omówiono dwa modele teoretyczne: liniowy i ulepszony. Ulepszony model uwzględnia przewodność cieplną powietrza w odzieży i jej porowatość. W celu weryfikacji przedstawionych modeli zbadano doświadczalnie wpływ wilgoci na przewodnictwo cieplne dzianiny bawełnianej metodą kontaktową na gorąco. Analiza korelacji pokazała, że ulepszony model ma ważną zaletę, otóż może przewidywać stabilizację efektywnej przewodności cieplnej.
Rocznik
Strony
61--65
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • University Maribor, Faculty of Natural Sciences and Mathematics, Department of Physics, Koroska cesta 160, Maribor, Slovenia
  • The Academy of Sciences and Arts of Pomurje, Lendavska ulica 5a, Murska Sobota, Slovenia
  • The Academy of Sciences and Arts of Pomurje, Lendavska ulica 5a, Murska Sobota, Slovenia
  • Titera Innovative Technologies, Mondova ulica 59, Šentilj v Slovenskih goricah, Slovenia
  • University Maribor, Faculty of Natural Sciences and Mathematics, Department of Physics, Koroska cesta 160, Maribor, Slovenia
  • The Academy of Sciences and Arts of Pomurje, Lendavska ulica 5a, Murska Sobota, Slovenia
Bibliografia
  • 1. Parsons K. Human Thermal Environments: The Effects of Hot, Moderate and Cold Environments on Human Health, Comfort and Performance, 2nd ed. London: Taylor & Francis, 2003.
  • 2. Fanglong Z, Weiyuan Z, Minzhi C. Investigation of Material Combinations for Fire-fighter’s Protective Clothing on Radiant Protective and Heat-Moisture Transfer Performance. FIBRES & TEXTILES in Eastern Europe 2007; 15, 1(60): 72-75.
  • 3. Haghi A. Mechanism Of Heat And Mass Transfer In Moist Porous Materials. Jurnal Teknologi. 2002; 36: 1-14.
  • 4. Hes L, Loghin C. Heat, Moisture and Air Transfer Properties of Selected Woven Fabrics in Wet State. Journal of Fiber Bioengineering & Informatics 2009; 2: 141-149.
  • 5. Hock W, Sookne A, Harris M. Thermal Properties of Moist Fabrics. Journal of Research of the National Bureau of Standards 1994; 32: 229-252.
  • 6. Yoo H, Hu Y, Kim E. Effects of Heat and Moisture Transport in Fabrics and Garments Determined with a Vertical Plate Sweating Skin Model. Textile Research Journal 2000; 70: 542-549.
  • 7. Romeli D, Barigozzi G, Esposito S, Rosace G, Salesi G. High Sensitivity Measurements of Thermal Properties of Textile Fabrics. Polymer Testing 2013; 32(6): 1029-1036.
  • 8. Slavinec M, Repnik R, Klemencic E. The Impact of Moisture on Thermal Conductivity of Fabrics. Anali PAZU 2016; 6(1/2): 8-12.
  • 9. Michalak M, Felczak M, Więcek B. Evaluation of the Thermal Parameters of Textile Materials Using the Thermographic Method. FIBRES & TEXTILES in Eastern Europe 2009, 17, 3(74): 84-89.
  • 10. Afzal A, Ahmad S, Rasheed A, Mohsin M, Ahmad F, Nawab Y. Characterization and Statistical Modelling of Thermal Resistance of Cotton/Polyester Blended Double Layer Interlock Knitted Fabrics. Thermal Science 2015; 00: 201.
  • 11. Feng A, Wu G, Pan C, Wang Y. The Behavior of Acid Treating Carbon Fiber and the Mechanical Properties and Thermal Conductivity of Phenolic Resin Matrix Composites. Journal of Nanoscience and Nanotechnology 2017; 17(6): 3786-3791.
  • 12. Pac M, Bueno M, Renner M, Kasmi S. Warm-Cool Feeling Relative to Tribological Properties of Fabrics. Textile Research Journal 2001; 71(9): 806-812.
  • 13. Uçar N, Yılmaz T. Thermal Properties of 1×1, 2×2, 3×3 Rib Knit Fabrics. FIBRES & TEXTILES in Eastern Europe 2004; 12, 3(47): 34-38.
  • 14. Ozdi N, Marmali A, Kretzschmar S. Effect of Yarn Properties on Thermal Comfort of Knitted Fabrics. International Journal of Thermal Sciences 2007; 46(12): 1318-1322.
  • 15. Rosace G, Guido E, Colleoni C, Barigozzi G. Influence of Textile Structure and Silica Based Finishing on Thermal Insulation Properties of Cotton Fabrics. International Journal of Polymer Science, 2016.
  • 16. Onofrei E, Rocha A, Catarino A. The Influence of Knitted Fabrics Structure on the Thermal and Moisture Management Properties. Journal of Engineered Fibers and Fabrics 2011; 6(4): 10-22.
  • 17. Karaca E, Kahraman N, Omeroglu S, Becerir B. Effects of Fiber Cross Sectional Shape and Weave Pattern on Thermal Comfort Properties of Polyester Woven Fabrics. FIBRES & TEXTILES in Eastern Europe 2012; 20, 3(92): 67-72.
  • 18. Afzal A, Ahmad S, Rasheed A, Ahmad F, Iftikhar F, Nawab Y. Influence of Fabric Parameters on Thermal Comfort Performance of Double Layer Knitted Interlock Fabrics. AUTEX Research Journal 2016; 17(1).
  • 19. Afzal A, Hussain T, Mohsin M, Rasheed A, Ahmad S. Statistical Models for Predicting the Thermal Resistance of Polyester/Cotton Blended Interlock Knitted Fabrics. International Journal of Thermal Sciences 2014; 85: 40-46.
  • 20. Kothari VK, Bhattacharjee D. Prediction of Thermal Resistance of Woven Fabrics. Part I: Mathematical Model. The Journal of The Textile Institute 2008; 99(5): 421-432.
  • 21. Ahmad S, Ahmad F, Afzal A, Rasheed A, Mohsin M, Ahmad N. Effect of Weave Structure on Thermo-Physiological Properties of Cotton Fabrics. AUTEX Research Journal 2014; 15(1).
  • 22. Voelker C, Hoffman S, Arens E, Zhang H. Heat and Moisture Transfer Through Clothing. Paper presented at: Eleventh International IBPSA Conference; 2009; Glasgow, Scotland.
  • 23. Baltušnikaitė J, Abraitienė A, Stygienė L, Krauledas S, Rubežienė V, Varnaitė-Žuravliova S. Investigation of Moisture Transport Properties of Knitted Materials Intended for Warm Underwear. FIBRES & TEXTILES in Eastern Europe 2014; 22, 4(106): 93-100.
  • 24. Cui Z, Zhang W. Study of the Effect of Material Assembly on the Moisture and Thermal Protective Performance of Firefighter Clothing. FIBRES & TEXTILES in Eastern Europe 2009, 17, 6(77): 80-83.
  • 25. Standard ISO/TC 38 Textiles: ISO 11092:2014 Textiles – Physiological effects – Measurement of Thermal and Water-Vapour Resistance Under Steady-State Conditions (Sweating Guarded Hotplate Test).
  • 26. Mangat MM, Hes L. Thermal Resistance of Denim Fabric under Dynamic Moist Conditions and its Investigational Confirmation. FIBRES & TEXTILES in Eastern Europe 2014; 22, 6(108): 101-105.
  • 27. Mangat M, Hes L, Bajzik V. Thermal Resistance Models of Selected Fabrics in Wet State and their Experimental Verification. Textile Research Journal 2015; 85(2): 200-210.
  • 28. Salmon D. Thermal Conductivity of Insulations Using Guarded Hot Plates, Including Recent Developments and Sources of Reference Materials. Measurement Science and Technology 2001; 12(12): 89-98.
  • 29. Morton W, Hearle J. Physical Properties of Textile Fibres. Cambridge: Woodhead Publishing Limited, 2008.
  • 30. Zupin Ž, Hladnik A, Dimitrovski K. Prediction of One-Layer Woven Fabrics Air Permeability Using Porosity Parameters. Textile Research Journal 2011; 82(2): 117–128.
  • 31. Ogulata RT, Mavruz S. Investigation of Porosity and Air Permeability Values of Plain Knitted Fabrics. FIBRES & TEXTILES in Eastern Europe 2010; 18, 5(82): 71-75.
  • 32. Havlová M, Špánková J. Porosity of Knitted Fabrics in the Aspect of air Permeability – Discussion of Selected Assumptions. FIBRES & TEXTILES in Eastern Europe 2017; 25, 3(123): 86-91. DOI: 10.5604/01.3001.0010.1695.
  • 33. Slavinec M, Fras M, Zavec Pavlinič D, Mekjavić I. Toplotno Prevajanje Skozi Vlažne Plasti / Heatconducting through the Damplayer. Anali PAZU. 2012; 2: 62-69.
  • 34. Ramires M, Nieto de Castro C. Standard Reference Data for the Thermal Conductivity of Water. Journal of Physical and Chemical Reference Data1995; 24(1377).
  • 35. Lloyd J, Clegg W. Effect of Fibre Anisotropy on Composite Thermal Conductivity. Advance Materials Research 2008; 59: 148-152.
  • 36. Saad A, Echchelh A, Hattabi M, Ganaoui M. The Identification of Effective Thermal Conductivity for Fibrous Reinforcement Composite by Inverse Method. Journal of Reinforced Plastics and Composites 2014; 33(32): 2183-2191.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66031e30-542b-46ae-958a-f9b9f7d66916
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.