PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the Formation of Calcium Carbonate by Carbon Sequestration of Phosphogypsum

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently, the utilization and treatment of solid waste resources and the recycling of greenhouse gas CO2 need to be urgently addressed. Calcium carbonate powder was prepared by extracting Ca2+ from phosphogypsum, a by-product of wet-process phosphoric acid, with ammonium acetate solution and fixing CO2 with leaching solution. The effects of ammonium acetate concentration, liquid-solid mass ratio, reaction temperature, and reaction time on the leaching rate of Ca2+, and the effects of ammonia addition, CO2 concentration, and carbonization time on the conversion rate of Ca2+ were systematically studied. SEM, XRD, and particle size analysis were used to analyze the morphological characteristics and formation mechanism of carbonized products under different ammonia additions and carbonization times. The results show that under the optimal conditions, the leaching rate of Ca2+ can reach 97.9%, the conversion rate of calcium carbonate can reach 91.78%, and the D50 of calcium carbonate powder is 14.7 μm.
Czasopismo
Rocznik
Strony
52--59
Opis fizyczny
Bibliogr. 33 poz., rys., wykr., wz.
Twórcy
autor
  • Hubei Provincial Key Laboratory of Disaster Prevention and Mitigation Hubei, China
  • College of Civil Engineering and Architecture, China Three Gorges University Hubei, China
autor
  • Hubei Provincial Key Laboratory of Disaster Prevention and Mitigation Hubei, China
  • College of Civil Engineering and Architecture, China Three Gorges University Hubei, China
autor
  • Hubei Provincial Key Laboratory of Disaster Prevention and Mitigation Hubei, China
  • College of Civil Engineering and Architecture, China Three Gorges University Hubei, China
autor
  • Hubei Provincial Key Laboratory of Disaster Prevention and Mitigation Hubei, China
  • College of Civil Engineering and Architecture, China Three Gorges University Hubei, China
Bibliografia
  • 1. Cui, R., Bai, H., Gao, Y. & Xiu, X. (2022). Current situation of comprehensive utilization of phosphogypsum and its development trend of 14th Five-Year Plan. Inorganic Chemicals Industry. 54 (04), 1–4. DOI: 10.19964/j.issn.1006-4990.2022-0086.
  • 2. Chen, Q., Ding, W., Sun, H., Peng, T., Ma, G. (2020). Indirect mineral carbonation of phosphogypsum for CO2 sequestration [J]. Energy. 206, 118148. DOI: 10.1016/j.energy.2020.118148.
  • 3. People’s Republic of China Central People’s Government. Strive to achieve carbon peak by 2030 and carbon neutrality by 2060 – winning the tough battle of low-carbon transformation. http://www.gov.cn/xinwen/2021-04/02/content_5597403.htm.
  • 4. Aghbashlo, M., Hosseinzadeh-Bandbafha, H., Shahbeik, H. & Tabatabaei, M. (2022). The role of sustainability assessment tools in realizing bioenergy and bioproduct systems. Biofuel Res. J. 9 (3), 1697–1706. DOI: 10.18331/BRJ2022.9.3.5.
  • 5. Liu, G., Huang, Q., Song, K., Pan, Y. & Zhang, H. (2024). Improved method for calculating CO2 emission from industrial solid wastes combustion system based on fossil and biogenic carbon fraction. Waste Manag. 174, 164–173. DOI: 10.1016/j. wasman.2023.12.001.
  • 6. Cardenas-Escudero, C., Morales-Florez, V., Perez-Lopez, R., Santos, A. & Esquivias, L. (2011). Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration. J. Hazard. Mat. 196, 431–435. DOI: 10.1016/j.jhazmat.2011.09.039.
  • 7. Yang, G., Han, H., Li, T. & Du, C. (2012). Synthesis of nitrogen-doped porous graphitic carbons using nano-CaCO3 as template, graphitization catalyst, and activating agent. Carbon. 50 (10), 3753–3765. DOI: 10.1016/j.carbon.2012.03.050.
  • 8. Wang, Q. & Guo, D. (2018). Research on manufacture process parameters of light calcium carbonate. Inorganic Chem. Ind. 50 (03), 43–45. DOI: 12.1069.TQ.20180313.1011.022.
  • 9. Sun, B., Wang, X., Chen, J., Chu, G. & Chen, J. (2011). Synthesis of nano-CaCO3 by simultaneous absorption of CO2 and NH3 into CaCl2 solution in a rotating packed bed. Chem. Engin. J. 168 (2), 731–736. DOI: 10.1016/j.cej.2011.01.068.
  • 10. Lu, S., Lan, P. & Wu, S. (2016). Preparation of Nano-CaCO3 from phosphogypsum by gas–liquid–solid reaction for CO2 sorption. Ind. & Engin. Chem. Res. 55 (38), 10172–10177. DOI: 10.1021/acs.iecr.6b02551.
  • 11. Bao, W., Zhao, H., Li, H., Li, S. & Lin, W. (2017). Process simulation of mineral carbonation of phosphogypsum with ammonia under increased CO2 pressure. J. CO2 Utilization. 17. DOI: 10.1016/j.jcou.2016.11.012.
  • 12. Rahmani, O., Junin, R., Tyrer, M. & Mohsin, R. (2014). Mineral carbonation of red gypsum for CO2 sequestration. Energy & Fuels. 28 (9), 5953–5958. DOI: 10.1021/ef501265z.
  • 13. Liu, J., Xie, T., Zhu, Y. & Zhu, B. (2010). Preparation of high quality light calcium carbonate from calcium phosphate gypsum slag by nitric acid leaching. Environ. Chem. 29 (4), 772–773. https://kns.cnki.net/kcms2/article/abstract?v=qEs6_XgQVxy-BeWuGc1nwmmFVeqidfRVEIf_vFrTWTDaFW8jRYNSSzrptIbZ-7bH3i2UAwZ8jLAfQwlLszVxWuoixDrnBsk4xC-BZC-zilUKMWdiu_dZcPa0Gyc-PbUMB8ly83BlOnN_S2oFS8od-5Fj-LahxqWdOZVhl1oOqkfHKe5qVs7v8hdFlx8HH9e-G&uniplatform=NZKPT&language=CHS.
  • 14. Liu, J., Zhu, B. X., Zhu, Y., Xie, T., Zhu, C., Yang, L. & Jia, H. (2010). Research on Sedimentation Volume during Calcium Phosphogypsum Slag Preparation of Precipitated Calcium Carbonate. Technology & Development of Chemical. 39 (12), 8–10. https://kns.cnki.net/kcms2/article/abstract?v=Oa1N_PzK0nRv1CvQ2d5_B23GzeNFUguNqpPkQ8_gBY8G-gHllas2k3l4EXSRoVCsg4osR7YOterA2C208W85kOErw4tsx3fXe_BgCA0zwP3nCM7XwnTFpbA9UOfRg3jik-5lc2rSqoik151sA3g6qzB33f7pGkPbM&uniplatform=NZKPT.
  • 15. Altiner, M. (2019). Effect of alkaline types on the production of calcium carbonate particles from gypsum waste for fixation of CO2 by mineral carbonation. Internat. J. Coal Preparation and Utilization. 39 (3), 113–131. DOI: 10.1080/19392699.2018.1452739.
  • 16. Adil, L., Oumaima, M., Abdelhak, K. & Hicham, H. (2020). Utilization of phosphogypsum in CO2 mineral sequestration by producing potassium sulphate and calcium carbonate. Mat. Sci. Energy Technol. 3, 611–625. DOI: 10.1016/j. mset.2020.06.005.
  • 17. Zdah, I., El Alaoui-Belghiti, H., Cherrat, A., Ennaciri, Y. & Brahmi, R. (2021). Temperature effect on phosphogypsum conversion into potassium fertilizer K2SO4 and portlandite. Nanotech. for Environ. Engin. 6 (2), 27. DOI: 10.1007/s41204-021-00122-3.
  • 18. Qiao, J., Chen, Q., Liu, Z. & Ding, W. (2023). Experimental study on preparation of vaterite-based calcium carbonate by CO2 mineralization with phosphogypsum. Ind. Min. & Proces. 52 (09), 14–18+25. DOI: 10.16283/j.cnki.hgkwyjg.2023.09.003.
  • 19. Liang, Y., Sun, H. & Peng, T. (2015). Effect of pH and Concentration of Ca2+ on Spherical Calcium Carbonate Crystallization by Continuous CO2 Gas Bubbling into Phosphogypsum Leaching Solution. Mat. Sci. Forum. Trans Tech Publications Ltd. 814, 552–558. DOI: 10.4028/www.scientific.net/MSF.814.552.
  • 20. Ding, W., Chen, Q., Sun, H. & Peng, T. (2019). Modified mineral carbonation of phosphogypsum for CO2 sequestration. J. CO2 Utilization. 34, 507–515. DOI: 10.4028/www.scientific.net/MSF.814.552.
  • 21. Liu, L., Qiao, J., Liu, Z., Xiao, J. & Ding, W. (2022). Experimental study on the preparation of high purity calcium carbonate from phosphogypsum. Conservation and Utilization of Mineral. 42 (05), 126–131. DOI: 10.13779/j.cnki.issn1001-0076.2022.05.015.
  • 22. Lin, Y., Peng, T., Sun, H., Jiang, M., Ding, W. & Lou, D. (2018). Dissolution Amount of Phosphogypsum in Ammonium Acetate Solution and the Change of Filter Residue. J. Synt. Crystals. 47 (03), 598–605+616. DOI: 10.16553/j.cnki. issn1000-985x.2018.03.024.
  • 23. Li, M., Peng, J., Zhang, H., Zhang, J. & Liu, X. (2012). Influence of P2O5 in Crystal Lattice on Gypsum Properties and Its Mechanisms. Adv. Engin. Sci. 44 (03), 200–204. DOI: 10.15961/j.jsuese.2012.03.005.
  • 24. Zhao, H., Wang, S., Liu, Z. & Zhang, M. (2019). Preparation of High-purity and High-white CaCO3 by Phosphogypsum Mineralization for CO2 Capture. Mat. Reports. 33 (18), 3031–3034+3042. https://kns.cnki.net/kcms2/article/abstract?v=Oa1N_PzK0nRIlxYz2Qqmv-YtyiNFPaJZ-vbY1lLqUY7W4VngKcply-0BHax7-w2abbSvf4YYoKsRe8-KWe8ANP8PpUnPSkKEO5S8CUyCmG8y-V35IaHiHzsnuFcDLsaBkBkNOkSlt_O-v_zlFkC2sjarQP4zfn6gY5x67wXoKL2w=&uniplatform=NZKPT.
  • 25. Ding, W., Yao, J., Qiao, J. & Peng, T. (2022). Preparation of High-purity CaCO3 from Phosphogypsum by CO2 Mineralization and Product Control. Conservation and Utilization of Mineral. 42 (04), 104–112. DOI: 10.13779/j.cnki.issn1001-0076.2022.04.012.
  • 26. Shi, S. (2018). Preparation of precipitated calcium carbonate from by-product phosphogypsum and its morphology control. Wuhan: Hubei University of Technology.
  • 27. Konopacka-Łyskawa, D., Kościelska, B. & Karczewski, J. (2015). Effect of some organic solvent–water mixtures composition on precipitated calcium carbonate in carbonation process. J. Crystal Growth. 418, 25–31. DOI: 10.1016/j.jcrysgro.2015.02.019.
  • 28. Konopacka-Łyskawa, D., Czaplicka, N., Kościelska, B., Lapinski, M. & Gebicki, J. (2019). Influence of selected saccharides on the precipitation of calcium-vaterite mixtures by the CO2 bubbling method. Crystals. 9 (2), 117. DOI: 10.3390/cryst9020117.
  • 29. Babou-Kammoe, R., Hamoudi, S., Larachi, F. & Belkacemi, K. (2012). Synthesis of CaCO3 nanoparticles by controlled precipitation of saturated carbonate and calcium nitrate aqueous solutions. The Canadian J. Chem. Engin. 90 (1), 26–33. DOI: 10.1002/cjce.20673.
  • 30. Liu, D., Zhuang, Z., Wang, Q., Diao, H., Xu, G., Peng, Y., Bao, H. & Li, D. (2023). Preparation of calcium carbonate powder by phosphogypsum mineralization for CO2 capture. Chem. Ind. Engin. Progress. 1–12. DOI: 10.16085/j.issn.1000-6613.2023-2224.
  • 31. Kobeleva, R. & Poilov, Z. (2007). Technology for Production of Calcium Carbonate with Prescribed Properties. Russian J. Appl. Chem. 80 (9). DOI: 10.1134/S1070427207090017.
  • 32. Zhu, L., Mao, D., Fan, W., Gan, X., He, Y., Han, Y., Xu, Q. & Jiang, Z. (2016). Preparation of CaCO3 Nanomaterials with Phosphogypsum. Guangzhou Chem. Ind. 44 (12), 55–57. DOI: 1001-9677 (2016) 012-0055-03.
  • 33. Konopacka-Łyskawa, D. (2019). Synthesis methods and favorable conditions for spherical vaterite precipitation: A review. Crystals. 9 (4), 223. DOI: 10.3390/cryst9040223.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65fdedd7-aacb-4638-ad49-feccec756bfe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.